Say My Innate Capabilities in a Natural Language 3/3

30 September 2020

Kenzo Iwama

Number

[(&) (¥) (@) ()
“Write “ ©. { ~~ 1
.

[(&) (¥) (@) ()

} (next)

“~~ as many as this“. { } (next)
“1” { - ~~ } (next)
“g» { - ~~ } (next)
(113 { . N N }
]
[(&) (¥) (@) () L
“Draw this number of O” { - }
& ["Draw ~7 | ~~} { } (next) {~
“1” { - O ~~} (next)
“gr { - OO ~~} (next)
“ o« { . . O ,.\,,.\,}
]
[(&) (¥) (@) () L
“Take that number of ~” { - ~~ L,
(4
44177 { . . ~
44277 { . V,.\J . A~ A~
29 V
o { * ~ 20 200 ~

(next)

} (next)
} (next)
} (next)

} (next)

[(@) (¥) (&) () v

“Jump this number of times” { }
© ["Jump” | AN R A (next)
“1 {1 3 (next)
o (. 2 3<' same” (next)
\<Same>
N { ’\(i (next)
“ e { . . "<} | <same>
AN
]
[(&) (¥) (@) ()
“Choose a number”. { R
& ["Choose ~” { ,,, ~~ 1} | } (next) {~ .
(next)
“ o« { - e - ~~ }
e« {1]
]
[(&) (¥) (@) ()
“~~ number of ~” { - } (next)
e~ {~]
& [~~~ | ~~} { }]
«1» . ~ ~e—) (next)
“g [~ o~ (5] (next)
\\
<same>
s { ~ N:ij (next)
« [v~ ~%) | <same

[(@) (v) (=) ()

“~~ number” { ~ }
& ["~~" ~~}{ } (next) { }{ }]
& "~ {~]
(next)
{ ~ ~~ } {next}
(-~)
[(@) () (=) ()
“~~ number” { ~ }
& ["~~" ~~} { } (mext) { } { }]
& "~ {~
(next)
f ~ ~~) {next}
{1 ~ }
[(@) () (@) ()
“~~ number” { ~ }
& ["~~" ~~}{ } (next) { }{ }]
& "~ {~
(next)
{ ~ ~~] {next}
{2 ~ }

[() (v) (=) (¥) “Count how many ~”. {~~ ,,, }
(next)

“Write the number”.

& ["Write ~7 | ~~1} (next) {~ }] (next)
v

“1” {(~~,,, } (next)

PER A V
[Txl { - ~ o~ } (next)
“ew _o» { - ~ o~ } (next)
“Write” “« {,,, ~~ ~~} (next)
oM {1]
@ {NN - . }]

[(<) (v) (=) (¥) “Count the number of ~”. {~~ ,,,] (next)

(4
“1” {~~,,, } (next)
@ ” { Y ~ o~ } (next)
“The number of ~ is ““” {(~~,,, }
“Write the number” {~~,,, ~~ } (next)
{NN 29 ¢ }

[13

~~ number ~” becomes a representative string bound to the representative of “~~
number ~”“1” {~ 1 } ,“~~number ~"“2” {~ 2 } and thelike. The program
has““ { -} from thebegibbibg and turns out to describe the representative of “17 {~
1}, {~ 2 } and the like.

[(&) (¥) =) ()

<

“the next of “ “1is

G

[() (J) (=) (¥)
“The next of 9 1s”

“1 0”.

[() (J) (=) (¥)
“The next Of 1” “1s ¢

“The next of 1”7 *1s 17°“.

[() (J) (=) (¥)
“The next of 19 1s “
‘\

{ ~X~ }
29

LR e

v
{7”2‘&\”\4/7,,#}/—

v

“The next of 91s 10”

“The next of 11s 2”

“The next of 19 is 20”

(next)

| This is this

| This is this
v L
[, ~~r ¥y 1
{ 1- } (next)
: <same> ' <This is this>
{ 1- } (next)
<came> | <This is this>
. <same>
v
{ 1- J]
{ 19 1 (next)
<same> <This is this>
['4
{ 19 I (next)
«— T
<same> v, —— | <This is this>
{ 10 } (next)
— ‘\ﬁ
<same> Ve ———————— <Thisis this>
{ 20 1
<same>

[() (J) (=) (¥)

“The neXt Of TR RN

{

s
: <same>
“The next of “ ™ is “§
, <same>

/L<same>

“The neXt Of ‘m z*u u.

{

Y
<same>

[() (J) (=) (¥)

“The next of “ “9 1s “

\

<same>

“The next of 9 1s 10°

| <same>

“The next of “*1is

<same>

. <same>

“The neXt Of 113 “9 j.S 113 “0” «.

[() (J) (=) (¥)

“The next of 99 s ”. B

<same>

“The next of 91s 10”

<same>
I

“The next of 91s 10”

<same>

“Th t of 99 is 100”
e next of 99 is U

<same>

}

(next)

‘\
A

<This is this>

}

(next)

—_

<This is this>

(next)

<This is this>

(next)

<This is this>

<This is this>

9g}\(next)

| <This is this>

9%}\ (next)

| <This is this>

(next)

| <This is this>

[() (J) (=) (¥)
“The next of 10”&

| <same>

“The next of “ “1s “¢“” -

<same>

K
“The next of 107 “is 107 “”

« 7 \nex

(next)

| <This is this>

(next)

- <This is this>

{ 10- - }

S

<same>

<same>

[() (J) (=) (¥)
“The next of 1” “9 1s “

“The next of 9 is 10”

“The next Of “ iS e

“The next Of 1” “9 iS 1” “0”
[() (J) (=) (¥)

“The next of “““” ““15“

“The next Of o iS e

“The next Of e iS “

€€ €C €€ €C €€ CC oo

]

: {

<This is this>

<This is this>

<This is this>

<This is this>

<This is this>

I <This is this>

[() (J) (=) (¥)

“The next Of ({132 “9 is [
“The next of 9 1s 10“.
“The next of “ “1is ““.

“The next of ““““91s “

I O”

[() (J) (=) (¥)
“The next Of “ “99 iS ”.

“The next of 91s 10”
“The next of 91s 10”
“The neXt Of 113 is ({12

“The next of ” “99 is “ “00”

[() (J) (=) (¥)
“The next of 999 i1s”

“The next of 9 1s 10”.
“The next of 9 1s 10”.
“The next of 9 1s 10”.

“The next of 91s 10”.

-

I~ <This is this>

<This is this>

<This is this>

-
-0 } (next)
<\;
.
-0 } (next)
-0 }

<This is this>

<This is this>

<This is this>

| <This is this>

999 } (next)

<This is this>

I

<This is this>

<This is this>

<This is this>

-
90) (next) |
.t
900 } (next)
1000 } (next)

“The next of 999 is “ { 1000 }
“1000¢.]

[() (J) (=) (¥)

“The nextof ““,,, ““is “ { ., %
/: <This is this>
“The next of “ “1s ““ { L, @
| <This is this>
-
“The next of ““,,,““is” { L,

The set of the above regularity includes the next of a 3 digit number from 100 to
998.

[() (J) (=) (¥)

“The next of “ “ 999 is (+999,) (next)
/i <This is this>

“The next of 9 is 10” { - QQW
| <This is this>

“The next of 9 1s 10” { - 9@
- <This is this>

“The next of 9 is 10” { - M
| <This is this>

“The next of ““is ““ { w
- <This is this>

-
“The next of “ “999 is ““000“. { --000 }]

[() (J) (=) (¥)

“The next of ““,,,““9,,,9is” L., 9,,,9 } (next)
;f <This is this>
“The next of 9 is 10” { < L, 9, ,%\}(next)
/%is this>
“The next of 91is 10” { - ,,, 9,,.,0 } (next)
“The next of 9 is 10” L «,,,9,,, Mext)
| <This is this>
“The next of 9 is 10” ., 9,,, mext)
“The next of 9is 10” L -, 'Mext)
| <This is this>
“The next of ““1s “” “ { -, Wext)
/: <This is this>

“The next of ““ ““9 9is” { «,,,0,,,0,,,0 } (next)
b A 29 b
{1 (113 il
20 07770'

]

[() (J) (=) (¥)
“The next of 9,,, 915" { 9,,,9 } (next)

| <This is this>

“The next of 91s 10” { 9,,,9 } (next)

|- <This is this>

“The next of 91s 10” { 9,,,0 } (next)

“The next of 9 is 10” {9,,,9,,,0 } (next)
‘\h

| <This is this>

-
“The next of 9 is 10” {9,,,0,,,0 } (next)

“The next of 9 is 10” { 9,,,0,,,0 } (next)
| e AL

-
“The next of 9 is 10” { ,,,0,,,0 } (next)

-]
“The next of 9is 10, ,, 0” { 10,,,0,,,0 } (next)
]

| <This is this>

| <This is this>

A representative of its member such as “The next of 7 is 8“is “The next of {+} ({)

(=) is {+} ({) (=) 7, and the representative links “The next of 5 is 6%, “The next
of 6 1s 7%, “The next of 7 is 8, and others.

[(<) (¢) (=) (#) “This number is 1 greater than { V o}
“that number”. { - Y } v
“The next of that number is “ “ . { - . <}
“““1s this number”. { v o -)]
[(&) (v) (=) (3) “This number is 2 greater than “ { v 2 e
“that number”. {2 i’ }
“The next of that number is “ “ “. - 2 . .- .;/ }
“The next of ““is “““ {V - 2 e e e
“““ig this number”. { - 2 ceee e e]

[() (v) =) (1)

v
"This number is “ { - ° e)
“““greater than “ - . e)
v
“that number”. { - .. VA
v
“1 greater is “ “ . -« 1 e e e)

“2 greater is “ “ . { - 2 e .. el

29

{13 greater is [T { - }
. (4
“this number’. - e e .. cer 1]
[(&) (¥) =) () .
"This number is “ { - .. e}
(4
“ o« “leSS than“ { . M }
(4

“that number”. { - .. SR

)) v
“The next of this number is” { - 1 }

(4

“e { . .. 1

: L) v
“The next of this number is” { R 2

(4
[13 “. { e e 2
/ | <same>

)) v -

“The next of this number is” { o ce e e
(4
« u. { . e
)) v

"This number is { - : V
“““less than “ { .
“that number”. {

[(@) (¥) =) ()
“There are two groups of O”. { 00O,,, 00,,, !}
“Which one is Vgreater than the other. (next)

“1” { O.O/??? Ooaaa }
“2“ { OO??? Ooaaa }
29 V
“ o« { ,,,OO po”’ }
O‘O/ 9 }

29
“ O,,, ,,, OO } (next <same>
TR ater an “<“7“' _ nex <same>

“This group is greater than “ {V 00,,, 00,,, !}

“that group”. { 0O0O,,, 00,,, !
]

[() (v) =) (1)

“There are two groups of O”. { 00,,, 00,,,}
“Which one is ‘greater than the other. (next)
“1,, { 09 9 OO 9 }
“2¢ { OO?;? OOaaa }
99 V

& { 9”OO po”’ }
Ogaaa }

“27’ { OO -

“ O [E) [RRE) OO } (neXt) <same>

113 : [[13]’]PX <Same>
v

“This group is greater t}/lan “ { 00O,,, 00,,, !}

“that group”. { O0O,,, 00,,, }
]

[() (v) =) (1)

“There is a number”.

& [(«) (v) (=) () ”~~ number ~“ { ~ }
& [~ | ~~))]
e [~ {~ }]
(next)
{ ~ ~~ } (next)
{ - ~ }
]
& ["Thereis ~” { ~} |
-3
]
[(@) (¥) &) ()
“There are “ “ numbers”. {1
& [(«) () (=) () ?”~~ number ~“ { ~ }
& [~ | ~~))]
e [~ {~ }]
(next)
{ ~ ~~ } (next)
{ ~ }
]
& ["Thereis ~” { ~ }]
CC
7 v
« O,)

When the program retrieves the above and tries to apply them, it finds cases where it

onlyuses {+} or {+ -+ ,,, } andputs away © with strings that follow.

Addition.

ECONCONCONCD

{O (2/ } "hereis 1 O” (next)

{O o “here is 1 O” (next)

{O o ”put them together” (next)
{90 } (next)

{OO } “hereare 2 O” (next)

{OO } “land1is 2”]

EECONCONCONCY

{O 1 (‘D/ 1} “hereis 1 O” (next)

{O 1 O 1} "hereis 1 O” (next)

{O 1 O 1} ”put them together” (next)
{9@ 11 3 (next)

{OO 1 1} “hereare2Q” (next)
{OO 1 1 land1is2 } “land1is2”]

EECONCONCONCY

{OO 2 VOO 2} “here are 2 O” (next)
{00 2 0O 2} “here are 2 O” (next)
{OO 2 OO 2} ”put them together” (next)
{(‘)/OOO 2 2} (next)

{OO00O 2 2} “hereare4 O” (next)
{O0O00 2 2 2and2is4 } “2and2is4”]

EECONCONCONCD
{OO 2 O /OO 3} “here are 2 O” (next)
{OO 2 OO0 38} “here are 3 O” (next)
{OO 2 OOO 38} ’putthem together” (next)
{QOOOO 2 3 | (next)
{OOO0OO0O0 2 3 |} “1” (next)

v // omit the intermediate steps (or strings)

{OO00O0 2 3 1} “5” (next)
{OO000O 2 3 2and3is5} “2and3is5”]

[() (3) (=) (¥)
v

“Add this and ” {~~,,, ~~ .} (next)
“that makes” {(~~,,, ~~ .} (next)

v
{NN 29 T s } ”1” (neXt)

99 V
{?) ~ ° ~ 29 } "< (neXt)

v ”» ‘”\\
{~~,, ~~ ., ., } 1 (next) <same>
99 “
{NN 299 * PR A ~ }
v
{NN 99 T } and “ (neXt)
(4
{~~,, ~~ “that toget (next)
{:N sy (next) | <same>
{"\/"\/

29 4//*
o T 3T ey
“Add (113 and [13 (makes [{ 1%

{NN 9 9 Add * and °* makes }

[() (3) (=) (¥)

€

“There are

X ~ ”»

“Count how many ~7”.

1% R {
~ ~
1 29

X

[() (3) (=) (¥)

”There are {13 and € ”.

”Add this and “
“that is ”

" »

~ and”.

~~ ., -} (next)
,) (next)
~~ ., -+ } (next)
I (next)
} (next)

<same>

mediate steps (or strings)

~ and ““ ~ are

L, . . and --
} (next)
} (next)

} (next)

Add - and - is .}

is -+

[() (3) (=) (¥)

“Add ““ and “ { . .o } (next)
v
TR makes » { . .o } (next)
“o { Add - and :- makes - }]
[@) =))
“Add “ to « { . } (next)
“wwgon {- } (next)
““' { Add . tO .o is } :|
[(@) () =) ()
“Add all the numbers in a list”. {- oy)
“What 1s the addition result”. {- o)
v
“add“” to « { gt L, } (next)
LR 4%\ { .
| same> | This is this
“add ” “to “«« { .
g —
<same> - This is this
“add “” to “” ¢« { .y (next)
g
|_This is this
v
“add““tocc““ { - c e oo (neXt)
18 . | This is this
v
“add“”to“”“ { e o o o cee e e e } (neXt)
“iS “© o« “. ‘m\\
| This is this
v
“add “” to 7« { s . een 'N (next)
g
. This is this
4.//
“add “ “to ««« { s cee e cee e } (next)

“is “,““.\

“The addition result is “ “ “. {0 oo oL e }]

<same>

The program retrieves strings that match input strings with replacing sub strings by
their representatives. But not further retrieve strings that match retrieved strings. For
example, it gets “Add 5 and 4 is”, and retrieves “Add 5 and 4 1s”, followed by “9”. But it
does not retrieve strings of counting 5 objects, counting 4 objects, putting them together

and counting 9 objects.

Subtraction.

[(<) ({) (=) ({) “Thereare““ ~". { ~~ ,,, |

"Take “& away from them”. ~~ 1 (next)
(4
{ ~ “1” (next)
{ this is this

{
{ this 1s this
29 V ‘ . ‘
{ ~9 } ‘4 (next)— this is this
{ ey 1 (next) this 1s this
“How many ~ are left”. { ~ ! (next)

v
{ ~,,, b ‘1 (next)

» 9

(4
{E <same>

EIXG

~ are left”. L ,,, ~~

[(&) (v) (=) (V) “Subtract ““from““is“ — <same>

<same>

"Take “& away from {~~,,, (next)

this is this

this 1s this

<same>

this is this

“How many ~ are left”. { ~ ., (next)
V (1% B
{ ~ ,,,} 1 (next) <same>
<same>

4
“ “% ~ are left” A{/ 5 } <same>

“Subtract “ “ from “ “1s

(next)

[

(=) (&) =) ()
““Sminus “‘@ds S <same>
<same>
"Take “¥ away from <7, {~~ ,,,} (next)

this is this

this 1s this

this is this

“How many ~ are left”. { (next)
4
{ ~ ,,, 1 1 (next) <same>
<same>

v 713 [A
« “4‘—N ar DFt”. { } <same>

- A 4 B
LU “ﬁ/

“““minus ““is

[(&) () &) ()
“Add““and““iS”
13 " {

<same>

<same>

“Subtract\“.“ from”

{
S {
i {

{

“Take “ away fro

{31 \
| <same>

(next)

~~~ .. }

This is this

} (next)

~T }

~T } (neXt)
(4

~ ~ s s e }

<same>
<same> //- <same>
v
44177 { .. ~ A~ - oo ~ 1 (neXt)
[{X V
{ ~ ™~ o } (neXt)
[13 2 V
How many are left { ~~ ~ ., } (next)

“1” {

| <same>

.

{13

@ oo left”
“Subtract “ “ from “

€€ € ¢ 13

1S

{
{
(. .. .
(. ..
» e {

“Add € and)’ { . . L,

e 2 » {

is
“Subtract this from” [ - .,
“that is” (e
“that”. { . - L

} (next)

<same>
/
« o~ -} (next)
(4
: ~ } (next)
T, } (next)
(4
‘ T s, } (next)
(4
: ~ ., } (next)
™~ s } (next)
T s, } (next)
(4
oo~ ,,, -} (next)
™~ 5, } (next)

) o } (neXt)



[ (@) () =) ()

64Add € and”

IS,

1S

“»

“Subtract this from”
“that 1s”
“that”.

[ (@) () =) ()

“Add €< and”

e = »

1S

“»

“Subtract this from”
“that 1s”
“that”.

[ () () =) ()

“Subtract “ “ from”

e 2 »

1S

“»

“Add this and”
“that is”
“that”.

{- - } (next)
v
{ - - } (next)
v
[ I (next)
v
[ } (next)
v
(e } (next)
("4
{ - }
v
{- - } (next)
("4
{ - - } (next)
v
re o I (next)
v
[ } (next)
v
(. } (next)
v
rel }
v
A } (next)
v
3 } (next)
v
} (next)
v
ST I (next)
v
(. } (next)



Multiplication

[(«) (y) &) (V)

X

"There are

groups of “ “ O”,

{000,,,

“How many O in all th‘s groups’.

<This is this>

“Add ““and “ {©000,,, 090,,, .
““'5"““‘\ {OOO,,, OOO,,, ,,,}
\
| <same> L
/ A/V

“Add {1 and €< is “ﬁ“ “.

{OO0O0,,, ooo,,, 000,,,

5”}

[
<same>
|-

| <This is this>

“Add ﬂAm/“HS C‘T“ “.

T

<same>
-

“Add I and €< is C*“ “.

|

<same>

“Add {1 and € iS ‘#“ “.

-

{’5’ OOO”’ OOO”’ 29

| <This is this>

W

OOOaaa OOO”’ [EERE)

\
W/

0o0o,,, 000,,, !}

{’5’

{55’

!

<same>

\

(133

* Oin all the groups*.

[ (&) (¥) (@) ()

I

"There are
“Add all of them”.

“Add € ¢

[13 and € iS “'4i\

| <same>

“Add {13 and € iS “*“ “.

|
<same>

<

{O0O0,,, 000,,, ,,,}

}

| <This is this>

| <This is this>




{ 2

b

“Add € and € is “V‘Q

| <same>

and ““1is

«“ 4“67/“““/
Add e

{ bR

b

| <same>

{ 2

K

“Add W

<same>

“Add “and ““ is "¢,

{

| <same>

“Add ‘and/ls\

{

| <same>

“Add AN is (K

[ (&) (¥) (@) ()

“Add I times is ”»

“Add ““ 2 times is “
“Add ““and ““ig ““«

“Add ““ 3 times i1s “
“Add ““and ““ig ““«

“The next of “ “1s ““*.
“Add ““““times is “

“Add {1 and € iS {13 “.

“The neXt Of € iS {13 “.
“Add I times iS 13

“Add {13 and € iS {13 “.

“Add I times iS €€ “'

{

| <This is this>

| <This is this>

| <This 1s this>

| <This is this>

<same>

| This is this




[ (&) (¥) (@) ()

X [

times “ “1is {
64Add €6 ¢ CC e times is [ {
@ [ 64Add I {E times iS [13

/I omit steps

IEIEG

({13 € {

times “ “1is

[ (&) (¥) (@) ()
“Multiply ““by ““is “ {
“Add ““““times 1s “ {

& [ “Add ““““timesis “

/I omit steps
]
“Multiply ““by ““is “““. {



Division

[ (&) (¥) (@) ()
“Divide 4 O into 2”.

{ OO0O
4
{ OO0O
4
{ OO0 O
4
{ OO0 O
{ OO0 O
4
{ OO0 O
v
{ O @)
v
{ O @)
{ @)

“2 O each” {

[ (&) (¥) (@) ()
“Divide 6 O into 2”.

{00,,, }
{ 00,,, O

{ 0o,,, O

{ OO,,, 1}
} (next)
} (next)
} (next)
} (next)
(4
O } (next)
} (next)
O 1 (next)
O ' (next)
v

OO } (next)

OO OO

{00,,, }

O }

(next)



{ 000 00O O
{ OO OO 00O
{ O 000 00O
{ 000
“2 30" | 000
“Divide 6 O into 21is 3 O”
]
[ (&) (¥) (@) ()
“Divide 6 O into 3”. {00,,, !}
{00,,,
{ ©00O,,, O }
{ 0o,,, O 1
{ 000 O O
{ OO 00O O
{ O OO ©]0)
{ OO ©]0)
“3 20" { OO

“Divide 6 O into 31s 2 O”.

00O

000 }
}
o}
O }
@) }
@) OO



[ (&) (¥) (@) ()

“Divide 7 O into 3”. {O00,,, }
{CO,,, }

{ 00,,, O }

{ 0o0,,, O O }

{ 0o,,, O O o

{ 000 OO O o '}

{ OO0 OO @) O

{ O OO @) @)
“3 20”7 | O OO OO
“1 O remainder”  { O @)

“Divide 6 O into 31s 2 O and 1 O remainder”.
]

[ (&) (¥) (@) ()
DiVide o O into o

€ {OO Yy

@)

OO

OO



29

“
gy

v
SO

“Count how many in this”

[13 1”
“2”

€

Divide ““ O into “ “1

]

s““O. {

[ (&) (¥) (@) ()

Divide ““ O into “ *

“@ o« {OO s

“1” {00,,,
“1v7 |
“or |
“u {
o

“17 {

O???

@) O

55’O
00,,,
00,,,
00,,,

0o0,,,



“2” { O S,

“@ o« { OO,,,

“Count how many in this”

{  0O,,,
“1” O,,,
“Q” O,,,

€< O
29

“Count how many in this”

{
“1” {
“2” {

v
“
{ ] O
“Divide ““ O into ““is ““ O and” .

“«“« (O remainder”.

]

@)

OO0

00,,, !
00,,, !
0,,, !

00,,, !

., 00,,,!

,,  00,,,}

,,  00,,,}

,,»  00,,,}



[ (=) (v) (=) ()

X [ 113

times “ “1s “.

3 17’
“2”

X {

X . here” {

“Divide {1 by I is “' { .
I

- here” {-

I {

[ (=) (v) (&) ()

{13 ({313 €

times “ “1is

“Divide {1 by {13 is € “'

“This and this are

“the same as this and this”.

“This is the same as this”.



[ (&) (¥) (@) ()

X [ € ¢

times “ “1is

X [ €

plus ““is

“Divide X by X is € “'

NG

“and remainder is

“This and this are “

»

“the same as this and this”.

“This is the same as this”.

“This is the same as this”.

[ (&) (¥) (@) ()

“Divide 1 into 10” {—7——=

& [ “divide ~ “ =

—

v
“1” {
v
“2” { [ |

1]

AN

>

“1077 { [ | g

“Divide 1 into 10 is” y
“0.177 { [ R = | .
]

—

ocCc——

———

<same>

(4
}
(next)
(next)
]



[ (&) (¥) (@) ()

“This is 17, { ——
“This 1s 0.1”. 4

-—
“count how many 0.1 here®

« 1” {
“o” { ——

29

X

[ 0.1 13 {

[ (&) (¥) (@) ()

“2 of 1 divided by 10 is” { =
< [ “Divide 1 by 10 is” { =——
“0.1” { [ | ,

v

“1” { i
v

“2» { i

v
“put them together” { ==

“2 of 1 divided by 10 18”
v
“0.2” { [ o |

[ (&) (¥) (@) ()
“““of 1 divided into 10 1s” {

< [ “Divide 1 by 10 is” { =——
“0.177 { [ | ,
v
“1” { oo - }
v
“2» { oo - }
9 v

9« { i P | o | }
“put them together”

( =X, = }



“““of 1 divided into
“0.” “» {

101is”
v

T = }
29

[ (&) (¥) (@) ()

“10 of 1 divided into 10 is” { =22 ,,, }
& [ “Divide 1 by 10 is” { =——— }
“0.1” { == ,,, } ]
v

“1” { =] - }

v ———
“o» { oo - }

v
“9” { i P | - | e | } B <same>
“10” { i P | s o | =¢ }
“put them together” <same>
( = ,,,= <«
“10 of 1 divided into 10 1is 1”
{ =, ’Eﬂ }
[ (&) (¥) (@) ()
“1” “of 1 divided into 101s” { =29 | }
& [ “Divide 1 by 10 is”
“0.17 ]
v

“1” { [t | ,

v
“2» { e | ,

| <same>
“1077 { s e | ,
“put 10 0.1 together” | <same>
( =t= s )
v

“11” { ==777= =777 }
“1»”“ { :n,”ﬂ ,,’E }

“put ““0.1 together”




{ == (=1 = =]
99

“1” “of 1 divided into 10 is”

“10 of 1 divided into 10 and”
v

{ == (=1 = =]
99

“““of 1 divided into 10 is”
( =,

“1 9«

[ (&) (¥) (@) ()
“This 1s 1”.
“This 1s 0.1”.
“This 1s 0.1”.

{ —————————

“count how many 0.1 here*

“177 {

“9” { =——=—

€

“count how many 0.1 here”

“17’ {

“9” { =——=—
PR

X {

“put them together”
{ —

“count how many 0.1”

17 =
2 =
o (( =—s
“efore { —=



[ (&) (¥) (@) ()
“Add 0.’¢“ and 0.’ 18”

““ of 1 divided into %/O is ”

“0. @ { o

IR

“0 W

| <same>

| <same>

<same>

“Put them ether”.

“Add € C and I3 is “w

[13 “k/‘

of 1 divided into LO 1s”

«0 49 [ e
. ’

“Add 0.” “and 0.” “1is O.”ﬁ“‘./

[ (&) (¥) (@) ()
“Add 0.” [13 and 0'77 [13 iS”
“““of 1 divided into }/0 1s”

“0 9«9 { [ e
. ’

“““of 1 divided into 101s”

«O 9« 9 { [ s e
. ’

“Put them together”.
“Add (113 and (113 iS 1“ [13 “'
“1” “of 1 divided into 10 1s”

[ |
)

[ |
b

[ |
b

“10 of 1 divided into 10 and”

(=Y

“““of 1 divided into 10 1s”
{ ED’ )

“1 .77 ”»” «

O

O

|
29
| <same>
[ | |
29
|
29
<same>
| <same>
| |
b
v
| | |
2000
| | |
2000
| | |
b
| | =
20
v
|




{ o 0 - | =]
99 ’ 9

“Add 0'” 3 and O'” 113 is 1'” 13 6‘.

[ (&) (¥) (@) ()

“Divide 0.1 into 107 { =————= 0.1
v
“1” { (= ‘/:1 0.1 }
“or { Oooc—— 0.1 }
29 V
“10” {,,,== 0.1 }

“Divide 0.1 into 10 is”
(4
“0.01”. { o=, 001 0.1

]

[ (&) (¥) (@) ()
“““of 0.1 divided by 10 1s”

{
& [ “Divide 0.1by 10is”  { =——
{

“0.01” == )5
v
< [ “u Of ~ { ~T : }
« 0.0” « “. { 00 . [ I |

[ (&) (¥) (@) ()

“10 of 0.1 divided into 101s” { =———

& [ “Divide 0.1 by 10 is” { =—

“0.01” { ==,
v
“1” { oo - }
v
“2” { oo - }
v
“9” { o e - oo }

| <same>




“10” { DD’,’ o e | }

“put them together” | <same>

( = &= ]
“10 of 0.1 divided into 10 is 0.1”

{ ED PAR A ED }
[ (&) (¥) (@) ()
“100 of 0.1 divided into 10is” { ==, }
& [ “Divide 0.1 by 10 is” { =—= }

“0.01” { sa= } ]
“1” { gD - }
("4

“2” { o Il =] - }
“10” { B e 99 DVD P AN }

“Put them together”
(=Y ﬁ/}/

{ == 29 = = 290 }
“11”
v
{ == 29 = = 290 }
[13 v | | 0 a DV
20 { 290 290 29 }

“put them together”

{ [ [ | [ o = }
(4

“99” { 2900 2900 =
“100” { 29 29 =
“put them together”

{ 29 = 20 =
“10 of 0.1 divided into 10 1s 0.1”

{ = 2900 = 200 = 29 =
“There are 10 0.1”

{ = 2900 = 200 = 29 =

“100.11s 17

<same>




“100 of 0.1 divided into 10 is 17

{ = b 7D b = 99 }
]
[ (&) (¥) (@) ()
“Add 0.0” “and 0.0” “1is”
“““of 0.1 divided intc:/ 101s”
440'077 “”» { | ), ’El | | , }
“““of 1 divided into 101s” y
440'077 “”» { [ | ), ’El | | .
“Put them together”. { e=,,=
“Add (113 and 113 is XL “. { EI:D” , [
“““of 0.1 divided int(‘)/ 101s”
440'077 @ { i e | ), ’El
“Add 0.0” “and 0.0” “1is 0.0” “ .
]
[ (&) (¥) (@) ()
“Divide 0.0,,,1into 10 { 0.0,,,1 =/m—m
“1” {00”,1 O }

“gp { 0.0 s, 1 ﬁé }

“10” {o0o0,,,1 , == }
“count how many 0 right of .” { 0.9, ,, 1 -
“1” { 00’771 29
This is th T
<This is this> |
e 7
“Qr { 0.00,,,1 Yy
29 V

“u { 0'077701 9

-
“1 larger number of “ “1g “““

«— |
“add 0 right of the rightmost 0” { 0.0,,,001 o,

<This is this>

}

| <This is this>

}




“««(right of .” { 00,,,001
“Divide 0.0, , , 1 into 10 is”

“0.0,,,01”

]

[ (&) (¥) (@) ()

“10 0of 0.0, ,, 1 divided into 10is” { =—=
& [ “Divide 0.0, ,, 1 by 10is” { —/—/—
“0.0,,,01” { @92 ,,,
("4
“197 { [ | - }
("4

“2” { o = | - }
[{Te %24 DVD
9 { =9, }

("4
“10” { e [ | s e ) e | }

“put them together”

{ = ,,,= }

“100f 0.0, ,, 1 divided into 1015 0.0, ,, 1”

{ = ,,,= }



Find the number.

[ () () =) ()

“There is one number”.

“Add “ “ to the numberis “.

«y— | Thisisthis

« { | This is this
(13 2 b2 “
Find the number”. { - " This is this
“““minus ““is“ { -+ - Add -- to 18 - - minus °- 18
(4
“\- Add -- to is -+ © minus - is -
| <same>
“The number is ‘A‘“./ ]
[ (=) () =) (v)
“There is one number”. { }
“Multiply ‘,“ and the number is . { o 1 1
| This is this
-
. .V
toomyy g Multiply - and - is - )
v :This is this .
. . Multiply -+ and is -}
<same> <same>
“Divide “ “by “ “is” . | ., Multiply -+ and + is -
Divide - by - - 1is }
“< ey, Multiply -+ and -+ is -
.. 4
Divide - by - is }
: <same>

“The number is ‘M



[ () () =) ()

“There is one number. { - }
“The number times “\“ . { ‘L\l }
| This is this
-
b 2 ) J
: This is this
b }
This is this
. / v
“IS u““. { . . .. }
“Add “* to the result is
\ v
<same> ‘ ) L .
<same> Add . ..to...ls }
“Find the ?
(4
\—ﬂ { ° 99
<same>

XL

(L“ h €

minus ““1s

{. .
290

Add - .- to--ig v oo+ minus * .- is - }
<same>l <\A\\L K

1 — |

This is this This is this

“Divide ‘l‘ by {13 is 113 “' { .

. minus .« . iS

This is this This is this

<same>

“The number is “€“
]

It tries to have another program Py do as I do. It outputs strings with quotations that
are bound to what I do, but finds some are not bound to strings with quotations. It tries
to figure out strings and to bind what I do to the strings with quotations so that I can

output the strings.



It gives three examples of the question and how to find the number to the other program

Pa. Then it gives a new example to the program Pa. The program Pa finds the number.

It tries to explain what it does to another program Py. It binds string with quotations

when it finds strings that are not bound to strings with quotations.

Later, the program devises regularities that are bound to strings “unkown” and “known”

/ “given”. When the program devises the regularities, it uses the following lists.

(=) () =) ()

“There is one number. { - 1
“The number times “ “ { - 1 1
(«) () =) ()

“There is one number. { - 1
“The number times 2 { - 1 }

(«) () =) ()

“There is one number. { - 1

“The number times 3 “ { - 1 }

»



A representative string and its members (examples)

“a set of ~”
“a set of numbers”

N

“number”

() (v) ) () &)\ “1” 1
() (3) =) ) =) (L) “ 2
() (v) =) (y) =) (L) “g” 3

“asetofadd““and““isuu” ((_) ( ) (_>) (*)

“Add ““and ““is ““* (<) (1) /(=) (v) ‘Add ““and ““is ““
{- .
(<) (y) =) (v) =) () “Add 1and 1is2” ~ ~
(«) (1) =) (v) =) () “Add1and 2is 3" ~  ~~
(=) (y) =) (v) (=) ) “Add 2and 1is 3" ~~  ~
“a set of subtract “ “ from “ “1is “” () (v) =) ()
“Subtract ““ from “ “is “““ (<) ({) (=) (v)

(<) ({) (=) (¥) (=) ({)  “Subtract 1 from 1 is 0"
(<) (¥) (=) (4) (=) () “Subtract 1 from 2is 1”
(=) ({) (=) (v) (=) ({) “Subtract 2 from 1is -1”



[ (=) () =) ()

“an example of “~" is “

X

& [ (@) (v) e~ {~
]
& [« (=) () 7~
() (v) &) ) &) ) v o« {3
(=) (v) =) () =) () “ {3

29

The program gets “an example of object is O”, “an example of object is [1”, “an example
of object is V”, and forms a regularity that has “an example of object is ~” as a string

with quotations.

Suppose the program gets “an example of object 1s”, it retrieves the regularity and tries
to make “~” be a member of “~”. But it does not have a way to do so. Suppose “T” gives

the program a member of “~”, the program retrieves the member.

The program then makes a regularity that, given “an example of object is”, retrieves a

member of “~” that is in the link of members of the object.



Strings to see a member and a representative

When the program does not retrieve a way to find the number, it tries to form a way to
find it. It also collects cases where the program does not find the number and cases where
it finds the number. The program tries to form a hierarchical regularity that describes
when it finds the number, and when it does not find the number. The program already
formed a regularity that describes it reaches a goal state when it has a way and it does
not when it does not have the way, and describes making the way to reach the goal state.
The program replaces “find the number” by “reach a goal state”, and finds the current
cases match the regularity already formed. It places “find the number” in “make the way
to reach the goal state” and gets “make the way to find the number”. “Make the way to

find the number” consists of having three examples of “find the number”.

Later the program has a goal to have another program P. do “find the number”. But it
does not have the other do “find the number”. It retrieves a regularity of changing states
from not finding the number to finding the number. The regularity consists of a state not

finding the number, having three examples of finding the number, and a state finding it.

The program replaces “I” by “one” and replaces “one” by Pz, and has P, get three examples
of finding the number. To achieve a goal of having P, get three examples, the program
replaces “one” by “I” and “I” by “Pa” in a regularity of “one has me get examples”, and

gets a new regularity of “I have Pa get three examples”.

Further later the program has a goal to have P do to have P find the number, and finds
Pa fails to do so. The program gives Pa how to have Pb make a way to find the number.

It gives Pa “Pahas Pb get three examples”.

When the program finds Pa does not do it, the program retrieves a regularity of my
making examples of finding the number, and replaces “I” by “Pa” to give Pa the regularity

of “Pa makes examples”.



[

() (J) (=) ()
”An example of count how many “~” is”
& [ “count how many “~*““ (<) (§) (=) (v)
v
“1” {NN - }
(4
“27’ {"\./N - }
29 V

“ o« { - »-\_,»-\.«}

]

& [ “An example of ~”

“~ (<) (¥) e~

\

() ) =) () =) () v o«

() (3) (=) () =) () «
“s ¢«
]
“count how many:\'““ (<) (‘) (=) (‘)

“1” [~~ ., )
@ =X

7 v
“ (L, ~~)

() () =) () =) ) v (X

() () =) () =) () “1 (X~
“277 {NK/

() (¥) ) (¥) =) (L) “1” (L
“2” {’\I’\/’\/

“3” {NNN



[ () () =) ()
“An example of multiply a number and a number is “

& [ (=) ) =) ()

“Multiply ““and ““is«  {+ - } (next)
“ [« 0 )
]
& [ “An example of ~”
o (<) (v) (=) (¥) “ e )
(«) (v) (=) (v) =) ) v “«7 {1}
(«) (v) (=) (v) (=) (y) “«7 {1}
I -
]
(«) () =) ) “Multiply a number and a number is” (next)
Nnumber”.
() () (=) ) (=) (y) v “Multiplyland1is1” { ]
(<) () (=) (y) (=) Q) “Multiply 1 and 2 is 27 {1
() (v) (=) (y) (=) ({)  “Multiply ““and ““is““” { }
“Multiply 1 and 1 is” {1 1 } (next)

“1” { 1 1 1 }



“an example of a number is”

& [ “An example of ~”

‘s (=) (3) =) (¥) “« o« ()
() (v) (=) &) (=) (&) v« ()
() () =) () =) () “« vy
“Is ¢«

]
& [ («) (‘) (—) (#) “a number”

]
(<) (+) (=) ({)  “anumber”.
(=) () (=) <¢>)<w v s [}
(@) () =) ) =) () “ )
(<) () <§;’<¢> =) ({) “« « )
o,

Suppose that the program gets input strings. Then the program sees if a sub string of
the input matches a string of a member of a regularity Fsus in its memory. If the sub
string matches the string, the program replaces the sub string by a representative Rsus
of the string by using a pointer (—) to its representative. The program then sees if
the input strings with replacements, match strings of a regularity & in its memory, and

if the input match the strings, it retrieves the strings from the memory.



As the input strings continue, the program sees if the input keep matching the retrieved.
When the input strings end and the retrieved strings continue further than the input,
the program sees if a sub string of the retrieved is a representative of some members. It
tries to replace the sub string by a specific member (i ) of the representative. The
program determines the specific member 1) by relations <this is this> and <same>, 2) by
a sequence of relations <this is this> and <same>, 3) by using strings of the retrieved as

I

a regularity already formed. For example, suppose the program retrieves strings 1

[T I3

minus “ “21s “ “3 “ and has

X

1 and “ “2 determined, then the program uses the strings to

€

determine “ “3, namely it conducts a minus operation.
Here, the program finds relations <this is this> and <same> in input strings and keeps

the relations to form a regularity out of the input strings.

A way to find the number

This section describes how the program forms a regularity specifying either what strings
make one be able to find the number, or what strings make one not be able to find the
number. Suppose the program gets various questions such as “There is one number. Add
5 to the number makes 12. Find the number”, the program is able to find the number
when it has formed a way to solve it, and it cannot otherwise. An issue here is how the
program finds the fact (or regularity) that the program is able to find the number when

it has formed a way to solve it, and it cannot otherwise.

Suppose the program gets a question of finding the number after the program keeps in
its memory sequences of cases where the program can find the number and cases where
it cannot find the number. Then it tries to find the number, but suppose it fails to do so.
It tries to find the number (reach its goal) in two directions; 1) it further retrieves
regularities to combine them to find a way to the goal, 2) it places focus on “find the
number” and “does not find the number”’, namely a specific case of the possible
inconsistent: cases of reaching the goal and cases of not reaching the goal. When the
program takes the second option, it drops strings specifying indivisual questions, namely
replacing individual strings by their representatives. Then the program finds there exist

¢ CC occ

sequences of strings that ends with strings “the number is , its goal, and there does



not exist such sequences of strings when it does not find the number. It forms a regularity

I

that there exist sequences of strings that ends with strings “the number is when it
finds the number, and there does not exist such sequences of strings when it does not

find the number.

Later the program forms a regularity of changing states from does not exist sequences
to exist sequences. In other words make a way to find the number, but strings with

quotations are not bound to make a way to find the number.

The next issue is how the program bind strings with quotations to steps of the regularity
just formed. Suppose the program have another program Pa find the number, the other
program Pa. cannot find the number. A goal is to have the other program find the number.
The program retrieves a regularity that matches the current states with replacing “I” by

“Pa”; the current are “do not find the number”, and “the goal, find the number”.

It makes the current be consistent with the retrieved, namely conducts the regularity by
replacing “I” by the other program “Pa” and “T” by “I”. The program binds a string “make
a way to find the number” to the regularity, and have the other program Pa make a way

to find the number. Then have the other program find the number.



5. Conclusion

This paper describes a case where a program outputs its original (or innate) capabilities
in strings acquired after it runs, in English. The original capabilities are written in a
programming language. A capability is, given inputs, finds sub strings that match
strings already acquired, and replaces them by their representatives; for example, given
“Add 4 and 3 is 77, the program replaces “4”, “3”, and “7” by “a number” after the program

has formed a set including “4”, “3”, and “7”, and binds “a number” to their representative.

What the program does are 1) it extracts strings common in pairs of inputs and outputs
(strings of regularities), 2) it binds English strings to the common strings, and 3) it
outputs English strings. The strings common in the pairs describe what the program
does to given inputs. Therfore the program describes in English what it does to given
inputs, in other words, capabilities written in a programming language. But the program

does not know yet that the capabilities described are original (or innate) ones.

Although this paper describes only a case of saying original capabilities of a program in
natural language, it appears to show an important direction; namely, a machine on which
the program runs may become a device that acquires ways of counting, numbers, and
computing as well as their meanings. Most people think any currently available
computer with programs have no meanings of counting, numbers, or computing in the
computer or the programs. But the paper shows a possible way to make a device become

able to have meanings of counting, numbers, and computing.

Much needs to be explored to construct a program that describes, in a natural language,
its capabilities in more cases and in more detail than the case described here; 1) Study a
structure (or an architecture) of a machine such as channels through which strings are
given and output, and a way of segmenting and sequencing strings. 2) Sets formed by
the progam need to be sorted when many sets are formed. An architecture and
techniques to sort them out need to be investigated. 3) Perspectives to classify
capabilities need to be introduced; in particular, the capabilities should be classified into
two, original and acquired, in other words, the program becomes to see if its capability
is original (or innate) or acquired. 4) Devise a structure and methods of ordering sub

strings (keeping a syntax) to make strings each of which is bound to a step of doing things.



Bibliography

Cook, V. J. and Newson, M. (2007). Chomsky's Universal Grammar: An Introduction.
Blackwell Publ.

Cypher, A. (1993). Introduction: Bringing Programming to End Users. In A. Cypher. (Ed.).
Watch what I do: Programming by Demonstration. MIT Press.

Giizerdere, G. (1996). Consciousness and Introspective Link Principle. In S. R. Hameroff,
A. W. Kaszniak, A. C. Scott. (Eds.). Toward a Science of Consciousness. The first Tucson
Discussions and Debates. MIT Press.

Hadamard, J. (1945). The Psychology of Invention in the Mathematical Field. Princeton
U. Press.

Haikonen, P. O. (2003). The Cognitive Approach to Conscious Machines. Imprint
Academic.

Harnad, S. (1990). Symbol grounding problem. Physica D 42, 335-346.

Holland, J. Holyoak, K. Nisbett, R. and Thagard, P. (1986). Induction: Processes of
Inference, Learning, and Discovery. MIT Press.

Holland, O. (Ed.) (2003). Machine Consciousness. Imprint Academic.

Kitzelmann, E. and Schmid, U. (2006). Inductive Synthesis of Functional Programs: An
Explanation Based Generalization Approach. J. Machine Learning Research, 7, 429-
454,

Lavraé, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. Ellis Horwood.

Lucas, J. R. (1964). Minds, Machines and Gédel. In A. R. Anderson (Ed.). Minds and
Machines. Prentice-Hall, Inc.

McDermott, D. (2001). Mind and Mechanism. MIT Press.

Minsky, M. (1968). Semantic Information Processing. MIT Press.

Mitchell, T. M. (1997). Machine Learning. McGrow-Hill Companies.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8, 295-
318.

Pfeifer, R. and Scheier, C. (2001). Understanding Intelligence. MIT Press.

Polya, G. (1953). Induction and Analogy in Mathematics. Princeton U. Press.

Schmid, U. (2003). Inductive Synthesis of Functional Programs. LNAI 2654, Springer.

Searle, J. R. (1992). The Rediscovery of the Mind. MIT Press.

Shieber, S. (Ed.) (2004). The Turing Test. MIT Press.

Smith, D. (1984). The synthesis of LISP programs from examples: A survey. In A.
Biermann, G. Guiho, and Y. Kodratoff (Eds.). Automatic Program Construction



Techniques. Macmillan Publ.
Tall, D. (2013). How Humans Learn to Think Mathematically. Cambridge U. Press.
Tallis, R. (1994&2004). Why the Mind is Not a Computer. Imprint Academic.



