

Consistency, Meaning, and Machines

--- Achieving a consistency as an intension of a machine,

and Meanings of strings for the machine ---

Nov. 7, 2020

Kenzo Iwama

Key words: Meanings of a sentence, Symbol grounding, Embodiment, Machine intension,

Consistency among the input and the retrieved, Prediction as a result of achieving the

consistency

1. Introduction

In this note I briefly summarize much research conducted for making a machine acquire

meanings of symbols, and explain a way we can take to construct a machine with its

intension and having meanings of strings. I make the machine in such a way that it gets

input strings through four channels and finds regularities in them. When the machine

gets a new string, it retrieves a string of a regularity that matches the input before the

new input string ends. The new input string continues and the retrieved string also

continues. The machine sees if the continuing input string matches the continuing

retrieved string. If it sees the matching, namely the inputs and the retrieved are

consistent to each other, it is said that the machine becomes able to predict how the

string continues, and the regularity found describes the world outside the machine.

The intension of the machine is to make predictions, and to do so, the machine tries to

find regularities in input strings and to achieve the consistency between a new input

string and a string kept as the regularity. In general, the more input strings the machine

gets and keeps in its memory, the more reliable regularities the machine is able to form.

As a result of forming the more reliable regularities, the machine is able to make a more

accurate prediction. The meaning of a string is an increase in the probability with which

the machine, given a new string, accurately predicts how the new string continues. When

the machine has the meaning of the string (the machine accurately predicts the string

continues), it becomes to say, given a new string, how the new string would continue if

the new string stops continuing.

2. Developing a machine that has meanings of strings

2.1 Rules, or syntax that a current machine follows

It is true that a current machine on which a program runs has an initial state, and

changes states from one state to the next state until a final state. Or the machine with

the program may run forever. Any change from one state to the next state is determined

at the time the program starts to run. A sequence of states from the initial state to the

final state may be different depending on input data after the program gets, but the

dependency is also determined at the time the program starts to run.

It is also true that a current machine with a program is “… by definition a device that

manipulates formal symbols. These are usually described as 0s and 1s, though any old

symbol will do as just as well. … Computation, so defined, is a purely syntactical set of

operations, in the sense that the only features of the symbols that matter for the

implementation of the program are the formal or syntactical features”.

Formal symbol

When a programmer writes a program, he / she uses symbols (letters, words, and

sequences of words) so that

1) the programmer allocates areas in a program space and specifies operations on

values stored in the areas.

2) the programmer specifies functions and variables in such a way that each specified

function takes which and which variables as its function variables.

3) the programmer specifies logical relations and variables in such a way that each

logical relation holds among which and which variables.

In any case the programmer specifies what relation holds among which and which

variables by using the following two rules: 1) the order of letters decides a word, and 2)

syntax of words decides the order of operations, inputs and outputs of each function, and

what logical relation holds among variables.

2.2 Meaning of symbols – Chinese room argument

Stanford Encyclopedia of Philosophy summarizes the Chinese room argument by Searle

as follows: “Searle imagines himself alone in a room following a computer program for

responding to Chinese characters slipped under the door. Searle understands nothing of

Chinese, and yet, by following the program for manipulating symbols and numerals just

as a computer does, he sends appropriate strings of Chinese characters back out under

the door, and this leads those outside to mistakenly suppose there is a Chinese speaker

in the room”.

The summary continues “The narrow conclusion of the argument is that programming a

digital computer may make it appear to understand language but could not produce real

understanding. Hence the “Turing Test” is inadequate. Searle argues that the thought

experiment underscores the fact that computers merely use syntactic rules to

manipulate symbol strings, but have no understanding of meaning or semantics. The

broader conclusion of the argument is that the theory that human minds are computer-

like computational or information processing systems is refuted. Instead minds must

result from biological processes; computers can at best simulate these biological

processes.”

For example, a computer, given a string “五足す五”, invokes a program (or sees an

instruction) that tells consulting a Chinese-English dictionary by comparing a string “五”,

“五足す”, or “五足す五” and words in the dictionary to see if the dictionary has it. “五” is

in the dictionary. The program (the instruction) tells extracting “5”. Next, the computer

again invokes the program that tells comparing a string “足す ” and words in the

dictionary. The computer extracts “plus”. Then the program tells “5 plus 5” is an English

sentence corresponding to the string “五足す五”, and outputs it. Whenever the computer,

given a Chinese string, outputs an English string that is the same as a human translator,

given the same Chinese string, writes. Then the computer appears to understand

Chinese and English as the human translator. However, the computer does not

understand Chinese or English after it gets Chinese strings and then outputs English

strings many times.

To make a machine understand Chinese sentences, I construct the machine in such a

way that the machine has its original program and the original program acquires firstly

English sentences with their meanings and secondly how to translate Chinese sentences

into English. For acquiring the sentences with their meanings, it binds inputs through

four channels; inputs through one channel are English sentences in quotations, inputs

through the second and the third channel are strings made by sensor and motor devices,

and inputs through the forth channel describe internal states of the program. For

example, a meaning of strings, “there are 5 ○” ｛○○○○○｝, is that the machine, given

the strings, confirm 5○ in ｛○○○○○｝. The machine firstly acquires a way of seeing

5○ in ｛○○○○○｝, and binds the way and “there are 5○” together. Then the machine

acquires “五” pointing to the acquired. (I claim the strings have other meanings than just

described, and explain them later in the note.)

2.3 Meaning of a sentence

A procedure as the meaning of a sentence

Several approaches are taken toward developing a machine that understands the

meaning of a sentence. It seems to me that Gierasimczuk (2007) gives us a good summary

of one approach to investigate into the meaning of a sentence. It says “According to an

old philosophical idea, the meaning of a natural language construction can be identified

with a representation of its denotation [Frege 1892]. This thought has been developed in

the direction of identifying the meaning of an expression with a procedure for finding its

extension [Tichy 1969, Moschovakis 1990, van Lambalgen, Hamm 2004, Szymanik 2004].

In the case of words: the meaning of “Poland” is the procedure of checking if the object

in question satisfies conditions of being Poland. In the case of sentences: the meaning is

a procedure for finding a sentence’s logical value. The meaning of “Alice has a cat.” is a

procedure for checking if Alice really has a cat. Therefore, we can say that someone

understands a sentence (knows its meaning), if he knows a procedure for checking

whether it is true or not”.

I think Gierasimczuk and others are right if 1) the meaning of a sentence is limited in a

narrow scope and 2) the procedure is assumed to be developed. Limitations they place

are the following; 1-1) An intention of a speaker as well as a listener is out of their scope.

When a speaker gives a sentence to a listener, the speaker has the intention of giving

the sentence, and the listener, getting the sentence, has the intention to satisfy the

intention of the speaker (or do something else). The listener, given the sentence Ss, tries

to retrieve the procedure to evaluate the sentence. But it often happens the listener does

not retrieve the right procedure, and tries finding / devising a procedure Pn to get the

logical value of the sentence Ss. Trying to get the procedure can be the meaning of the

sentence Ss for the listener (and may be for the speaker). It also happens the listener

retrieves the procedure and evaluates the sentence Ss by performing the procedure, but

gets the logical value different from that by the speaker (and others). This case can also

become the meaning of the sentence Ss for the listener. 1-2) Binding a sentence and

sensorimotor features (or states) together (or grounding a sentence to its environment)

is out of their scope. (I believe getting and putting features (or strings, words, sentences)

through several channels, and binding them together are inevitable to make the sentence

have its meaning. In the next section, I discuss symbol grounding problem and binding

strings together.)

For lifting the limitation described under item number 1-1) in the above, I think it

desired to extend the process of evaluating a sentence by integrating the following; 1-1)

collect sentences and procedures each of which evaluates the logical value of each

sentence and 1-2) devise a procedure Pn out of the collected sentences and the procedures.

1-3) keeping the difference between the evaluation result by the listener and that by the

speaker with the following: the sentence, objects neighboring to the sentence, and the

procedure the listener uses. Later, try to achieve the consistency between the result by

the speaker and that by the listener (in other words, resolving the difference).

For example, suppose a child is given a sentence “2 and 3 is the same as 5”, the child

may not have a procedure to see if the sentence is true. Then the child may take

sentences with procedures out of his / her memory, and combines the procedures to

evaluate the sentence; Put as many blocks as asked, such as “put 2 blocks; put one and

put the second one on top of the other” and “put 3 blocks; put one, put the second one on

top of the first one, and put the third one on top of the two blocks”. Put blocks on top of

other blocks already placed such as “put 2 blocks on top of 3 blocks already placed”. “See

the height of blocks put is the same as that of blocks put”. For the child, getting such

procedures contributes to devising a way to see if “2 and 3 is the same as 5”.

The same as the above can be said for a machine; the meaning of strings is a procedure

that the machine evaluates the logical value of the strings. When the machine does not

retrieve the procedure to evaluate the logical value, the meaning of getting the strings

become collecting procedures (bunch of strings) so that the machine devises a new

procedure out of the procedures to see if the given strings are true or not. When the

logical value is different from that by other machine, it is meaningful for the machine to

get the sentence because the machine keeps the sentence, objects neighboring the

sentence, and the procedure, and later it tries to see why the result is different from that

by the other, and to develop a procedure to cover the two cases.

Intentional logic (or other formal system)

Some researchers take an approach for representing the meaning of a sentence more

than its designation, and study intentional logic. Fitting (2020) explains motivation

behind the study of intentional logic “There is an obvious difference between what a term

designates and what it means. At least it is obvious that there is a difference. In some

way, meaning determines designation, but is not synonymous with it. After all, “the

morning star” and “the evening star” both designate the planet Venus, but don’t have the

same meaning. Intentional logic attempts to study both designation and meaning and

investigate the relationships between them.”

Fitting continues to say “Contexts in which extension is all that matters are, naturally,

called extensional, while contexts in which extension is not enough are intentional

Mathematics is typically extensional throughout—we happily write “1+4=2+3” even

though the two terms involved may differ in meaning. … In classical first-order logic

intension plays no role. It is extensional by design since primarily it evolved to model the

reasoning needed in mathematics. Formalizing aspects of natural language or everyday

reasoning needs something richer. Formal systems in which intentional features can be

represented are generally referred to as intentional logics.”

It seems the study of intentional logic shows that 1) one finds cases where the one is not

able to represent the meaning in a formal system already developed while the one studies

more of the meaning of a sentence than before and 2) the one sees the necessity to refine

/ revise the formal system and represents the meaning in the refined / revised system.

Although a formal system in general does not allow the one to describe sensorimotor

features in the meaning of a sentence since logical symbols are not bound to the

sensorimotor features as explained in the next section, the one becomes able to explicitly

describe more of the meaning in the refined system than before.

The fact that the one finds cases where the one is not able to represent the meaning of a

sentence in a formal system implies the one finds the difference between the represented

and the meaning of the sentence (or some in the meaning is missing in the represented).

The difference is seen (or detected) when some phenomena (or features / aspects) recalled

(or remembered) by the sentence cannot be mapped to the represented. In other words,

the one finds inconsistency between the represented and the phenomena recalled (or

carried) by the sentence.

Then I think it is required to make the machine find (or detect) the missing in the

represented (or inconsistency between the input and the represented) and have a method

to fulfill the missing (or resolve the inconsistency) in order to construct a machine that

understands the meaning of a sentence.

What I have been trying to is make the machine form hierarchical constructs /

regularities when the machine finds inconsistency between the input and the retrieved.

The constructs describe both cases where the input are not mapped to the retrieved and

cases where the input are mapped to the retrieved, and the constructs include a way

from the former cases to the latter cases.

2.4 Meanings of symbols – Symbol grounding problem

Symbol grounding problem has been seriously studied for the purpose of developing a

machine that understands the meanings of a sentence and behaves intelligently. Taddeo

and Floridi (2005) briefly states the problem as follows; “The symbols are merely a part

of a formal, notational convention agreed upon by its users. One may then wonder

whether an artificial agent, such as a robot, may ever be able to develop an autonomous,

semantic capacity to connect its symbols with the environment in which the artificial

agent is embedded interactively.”

When Harnad (1990) introduced the problem, he asked “How can the semantic

interpretation of a formal symbol system be made intrinsic to the system, rather than

just parasitic on the meanings in our heads? How can the meanings of the meaningless

symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded

in anything but other meaningless symbols?” Cangelosi and Harnad (2001) continue

describing the problem; “The symbols, in other words, need to be connected directly to

(i.e., grounded in) their referents; the connection must not be dependent only on the

connections made by the brains of external interpreters like us. Just the symbol system

alone, without this capacity for direct grounding, is not a viable candidate for being

whatever it is that is really going on in our brains when we think meaningful thoughts.”

Reviewing much work toward solving the symbol grounding problem, Taddeo and Floridi

(2005) state the requirements the solution must satisfy; “the interpretation of the

symbols must be intrinsic to the symbol system itself, it cannot be extrinsic, that is,

parasitic on the fact that the symbols have meaning for, or are provided by, an

interpreter.” and put forth two conditions: “a) no form of innatism is allowed; no semantic

resources (some virtus semantica) should be presupposed as already pre-installed in the

artificial agent; and b) no form of externalism is allowed either; no semantic resources

should be uploaded from the “outside” by some deus ex machina already semantically-

proficient.” They continue to state “Of course, points (a)-(b) do not exclude the possibility

that c) the artificial agent should have its own capacities and resources (e.g.

computational, syntactical, procedural, perceptual, educational etc., exploited through

algorithms, sensors, actuators etc.) to be able to ground its symbols.” They review eight

strategies proposed for the solution of the SGP in the last fifteen years, and say

the conclusion is that none of them satisfies the conditions put forth in the above.

The problem is still open as of 2015 (Bielecka 2015, Bringsjord 2015). It seems that

assuming / considering the existence of two separate worlds makes the problem difficult;

one is a formal symbol system and the other is the environment (including interactions

between the symbol system and the environment). The formal symbol system is one of

the latest results in the history of developing concepts / thoughts. Words / sentences seem

to have emerged to share something (or phenomena) in one’s brain with that in another

one’s brain at the very early human history. If we try to get hints from language

acquisition by children to guess how the emergence occurs, it seems improper to me to

assume the two separate worlds. During some development stage an infant utters

meaningful voices when the infant does something on objects and the infant apparently

has acquired basic behaviors of objects (such as roll, fall, and stay) before the infant uses

words describing the behaviors of the objects. The infant appears to share how the objects

behave with its parent and to have the parent do something by uttering voices so that

the objects behave as the infant knows (or images). Another phenomena we can get hints

to guess the emergence of sentences is that a child raises questions such as “what is this”,

“where is a candy”, after the child acquires various words with their meanings. Those

questions seem to consist of relations between objects the child is dealing with and the

words already acquired by the child.

Therefore, it seems reasonable to develop a machine that have words with their

meanings by introducing a stage where the machine makes utterances to share

something occurring inside the machine with another machine or a human before the

machine forms words / sentences to mean something. I think a proper way to investigate

is how a machine forms concepts, in a parallel and layered way, that integrate the

environment, the interactions with the environment, and audio inputs / verbal outputs

(or sequences of audio and verbal features).

I try constructing a machine that binds features extracted and serialized in the temporal

order through several channels, and finds regularities in them, assuming the features

are extracted and serialized. When the machine finds the regularities, it tries to have

another machine do the same by using utterances. If the utterances keep to be the same

for one regularity, the correspondence between the utterances and the regularity is kept

as a regularity and the utterances become meaningful voices (and then words). Moreover

the machine makes hierarchical regularities that cover both cases that follow

regularities already formed and cases that do not follow the regularities. An example of

a hierarchical regularity is the one that includes auditory / verbal features, “where is a

candy”. When the machine is asked to do something on some object by someone, the

object is usually within a visual scope of the machine. But there are cases where the

object is not in the visual scope. Then the machine forms a regularity to look for the

object and/or asks the one using audio features “where is the object”. (A motivation to

look for the object and/or to raise the question is caused by the intension of the machine,

which I discuss later in this note.)

After the machine has acquired how objects behave when the machine moves the objects

and sentences to describe the motions and behaviors, the machine acquires the number

system. It firstly gets and puts features though several channels in the form of strings

such as “4 ○” ｛ ○○○○ ｝. “4” is auditory feature in the first place and then becomes

a member of the number. (I describe how the machine devises the number system, in a

separate paper, to achieve consistency concerning repetitions of motions (or actions)

between the machine at one time and that at a later time and between the machine and

another machine.

A problem of seeing features in continuing inputs (and / or extracting features from the

continuing inputs) is open. Researchers in robotics, AI, and others have been making

much effort to solve the problem.

2.5 Embodiment

Embodiment has been considered to be a key to make an intelligent robot, and symbols

were expected to be connected to the meanings through interacting with the environment

if any symbols are used by the embodied robot. For example, Pfeifer and Scheier (1999)

say “The problem of embodiment refers to the fact that abstract algorithms do not

interact with the real world. Rodney Brooks forcefully argued that intelligence requires

a body (Brooks 1991a, 1991b). Only if a system is embodied we know for sure that it is

able to deal with the real world. Moreover, systems that are not embodied all suffer from

the symbol grounding problem.”

Ziemke (2016) reviews research activities to make a system embodied; “Embodied

approaches to AI – using robotic or simulated ‘autonomous agents’ – at least at a first

glance, allow computer programs and the representations they are using, if any, to be

grounded in interactions with the physical environment through the robot/agent

platform’s sensorimotor capacities. Brooks, for example, one of the pioneers of embodied

AI, formulated what he called “the two cornerstones of the new approach to Artificial

Intelligence, situatedness and embodiment” (Brooks, 1991). Embodiment from this

perspective simply means that “robots have bodies and experience the world directly –

their actions are part of a dynamic with the world and have immediate feedback on their

own sensations” (Brooks, 1991). According to Brooks, such systems are physically

grounded, and hence internally “everything is grounded in primitive sensor motor

patterns of activation” (Brooks, 1993). Situatedness, accordingly, means that “robots are

situated in the world – they do not deal with abstract descriptions, but with the here and

now of the world directly influencing the behavior of the system” (Brooks, 1991).”

Although much effort has been made to develop an embodied robot and to see how the

robot have symbols be grounded and be meaningful, Pfeifer and Iida (2003) describe the

state of research as of the year 2003; “One of the big unresolved issues to date is the one

of symbol processing: How is it possible that humans have the capability for symbol

processing? More precisely we would have to ask how it is possible that humans can

behave in ways that it makes sense to describe their behavior as “symbolic”, irrespective

of the underlying mechanisms, which might involve explicit symbol processing or not.

The question is very broad and of general importance: it is about how organisms can

acquire meaning, how they can learn about the real world, and how they can combine

what they have learned to generate symbolic behavior, a problem known as the “symbol

grounding problem.”. There is general agreement that learning will make substantial

contributions towards a solution. However, learning alone will not suffice – embodiment

must be taken into account as well.”

Ziemke (2016), siting from the work by Chemero, describes embodied cognitive science

have not resolved the issue as stated by Pfeifer and Iida (2003); “Chemero’s (2009)

characterization of the current embodied cognition research landscape, that there

currently are at least two very different positions/traditions that are both referred to as

‘embodied cognitive science’. One of these, which Chemero refers to as radical embodied

cognitive science, is grounded in the anti-representationalist and anti-computationalist

traditions of eliminativism, American naturalism, and Gibsonianecological psychology.

The other, more mainstream version of embodied cognitive science, on the other hand, in

line with what was referred to as robotic functionalism above, is derived from traditional

representationalist and computationalist theoretical frameworks, and therefore also still

is more or less compatible with these – as illustrated maybe most prominently by the

notion of symbol/representation grounding, as opposed to the more radical position of

anti-representationalism.

The position of radical embodied cognition, according to Chemero (2009), can be

summarized in two positive claims and one negative one:

1. Representational and computational views of embodied cognition are wrong.

2. Embodied cognition should be explained using a particular set of tools T, including

dynamical systems theory.

3. The explanatory tools in set T do not posit mental representations.”

Facing the difficulty to construct a robot that has representations / models of its

environment be grounded and / or use symbols that have meanings, some researchers

(Johnson 2007, Ziemke 2016), referring to works in synthetic biology, propose an

approach to overcome the difficulty; For example Johnson (2007) says “In retrospect I

now see that the structural aspects of our bodily interactions with our environments

upon which I was focusing were themselves dependent on even more submerged

dimensions of bodily understanding. It was an important step to probe below concepts,

propositions, and sentences into the sensorimotor processes by which we understand our

world, but what is now needed is a far deeper exploration into the qualities, feelings,

emotions, and bodily processes that make meaning possible.”, and Ziemke (2016) says

“modeling organisms as layered networks of bodily self-regulation mechanisms can make

significant contributions to our scientific understanding of embodied cognition.”

It seems that the difficulty remains even if research into sensorimotor processes to

construct models of self-regulation mechanisms is conducted because the symbols

remain separated from the models of the body unless a way of how symbols emerge out

of something (possibly units made out of sensorimotor mechanisms) is incorporated into

bodily self-regulation mechanisms.

I think it possible to overcome the difficulty. A way is to construct a machine that gets

continuing inputs and finds regularities in the inputs to form the regularities, and tries

to keep consistency among the inputs and the regularities formed. But cases occur where

some inputs are not consistent to regularities formed and then the machine forms

hierarchical regularities to achieve consistency among the regularities and the inputs.

The machine incorporates features of audio signals in regularities and then the audio

features become meaningful sentences. Here the machine is not a computer but it has

states and changes them from one to the next. Importantly it has no symbols, from the

beginning, that need to be grounded. A human writes a program running on the machine,

and programming constructs such as constants, variables, instructions, are for specifying

states and changes of the states. Each state consists of beginning, intermediate, and end

of actions such as getting inputs, forming regularities, retrieving regularities formed.

2.6 Achieving consistency as an intension

Intension of a robot has become got much attention by people since robots are introduced

in various fields such as care robots and autonomous cars. A human could do his / her

role with ease in the fields when he / she is able to expect what to do and how to behave.

The human tend to expect what and how the robot will do next when he / she sees actions,

verbal outputs, and/or some deed by the robot. Therefore it becomes important to show

to the human what and how the robot is going to do. Then the human regards the robot

to have its intension.

A robot studied / developed in such fields shows its intension that consists of values

produced by a set of functions defined (or procedures or logical sentences written) by a

human. Input values to the functions are determined by the environment. The intension

shown by the robot appears to be intrinsic as long as the input values are within the

domain of the functions because the robot, given the input values, gets output values of

the functions which show future behaviors of the robot. (In practice, the range the robot

moves around is limited into the environment where function values are kept within the

domain of the function.)

It seems that intension of a machine not just appears intrinsic but becomes really

intrinsic when the machine gets values that are not within the domain of the functions

and the machine is able to devise a method to deal with such values. In general the

machine is considered to have its intension when it has some goal and 1) it does a way

to the goal if it has the way 2) it devises a way to the goal if it does not have the way.

Devising the way becomes a new goal for the machine to achieve and may be carried out

1) by firstly seeing the machine does not have the way, 2) by secondly setting a new goal

(explicitly or implicitly) to find / form the way: revising functions that the machine

already has, forming a new function (or a method) out of functions (or methods) that the

machine has, or employing some other way to achieve the new goal, and 3) by executing

the way found.

I have been trying to construct a machine that has its intrinsic intension although the

intension is very limited. A human writes a machine program, and then the program

tries to have its intension become true; namely the program predicts, given a new string

(namely sensorimotor features), how the new string continues. The intension is satisfied

when the predicted strings are consistent to the new continuing strings.

For example, after the machine gets various inputs and forms regularities, the machine

gets the following inputs (an instance of a math problem); “There are two numbers.

Addition of the two numbers is 100. The difference of the two numbers is 10. Find the

two numbers.” And gets the following (an instance of the way to solve the math problem);

“Subtract 10 from 100 is 90. Divide 90 by 2 is 45. Add 10 to 45 is 55. One number is 45.

The other number is 55.” Then the machine gets a new instance of the math problem,

“There are two numbers. Addition of the two numbers is 210. The difference of the two

numbers is 18. Find the two numbers.” The machine makes a prediction (or solves the

problem); “Subtract 18 from 210 is 192. Divide 192 by 2 is 96. Add 18 to 96 is 104. One

number is 96. The other number is 104.” The strings predicted become consistent to the

continuing input strings.

A hierarchical regularity as a means to achieve consistency

Various (autonomous) mechanisms may construct systems that achieve (or keep)

consistency among two things that are not initially consistent with each other.

Constructing a hierarchical regularity is a result of achieving consistency among the two

things; one is cases where a regularity already formed holds and the other is cases where

the regularity does not hold. The hierarchical regularity integrates the two cases. For

example, suppose a regularity that objects are bound to audio features (or strings) is

formed. But cases where objects are not bound to strings occur, and are not consistent to

the regularity. Then the two cases are integrated to form a hierarchical regularity, and

the regularity is bound to audio features “what is this” or “what is the name of this”. For

another example, suppose a regularity an object is within a visual / other sensor’s scope

when audio features specify to do something on the object is formed. But cases where an

object is not within a visual / sensor’s scope occur. Then the two cases is integrated to

form a hierarchical regularity. Audio features “where is the object” are bound to the

hierarchical regularity.

3. A machine and a computer

3.1 The size of grain, a set of values, and a series of steps

The size of grain matters; People have a concept of a tube of a bicycle, and takes it as a

whole grain. People have also a concept of molecules of tube rubber, and considers the

molecule to be a whole grain. They have the two concepts separately, and takes relations

between them into their consideration if necessary.

People have a concept of a computational step and regards it as a single manipulation

when they develop computer programs and run them on a computer. But a designer of a

compiler (a program that translates a program written in a programming language into

a program in a machine language) looks inside a computational step, and sees each

computational step consists of several machine steps (a machine step is specified by a

machine language). An electronic engineer sees electronic circuits; for example, he

designs an adder which is an electronic circuit specialized for adding two numbers in

digits. The adder consists of logic gates. Each gate in the adder performs logical

operations on two digits such as “1 and 1 is 1”, “1 and 0 is 0”, or “1 or 0 is 1”. An engineer

regards a logic gate as a whole grain.

Similarly a set of values in a memory space can be considered as a state (or a pattern),

and the set of the values can be mapped to a state outside of a machine. Each value in

the set is manipulated by program steps, but a set of values can be considered to be taken

or put by one action of the machine. For example, a string of audio signals (the set of

values) is compared to various strings of audio signals (sets of values) stored in a memory

by an action of comparing two audio signals although the action uses a sequence of

program steps.

For another example, a bundle of values (or a string) “Find the number.” becomes a target

of comparison, and the bundle is compared to many bundles stored in a memory. When

the machine finds the matched bundle, it retrieves the bundle with bundles following,

and executes the bundle and then the bundles. In other words, the machine invokes a

sequence of mathematical steps such as “Subtract 18 from 210 is 192.” One mathematical

step is considered a single manipulation, but each mathematical step consists of many

program steps. When people place their focus on mathematical steps, they tries to trace

mathematically correct steps. On the other hand, they sees program codes to execute one

mathematical step when they place their focus on how the codes written by a

programming language conducts the mathematical step.

3.2 A machine conducts more than a so-called computer

A machine on which I have written and run a program is a so-called computer. But the

machine I have been trying to construct has the following features: 1) It has states each

of which can be mapped to an instance of the interaction between the machine and the

environment. Changes from one state to the next can also be mapped to changes of the

interaction. Here one state consists of many values stored in memory of the machine,

and one change is performed by many programming steps. When one takes the size of

grain into consideration, many values can become one state, and many steps can be one

change. For example, counting the number of objects consists of a sequence of counting

steps, the machine got the sequence and kept the sequence for later use. Each counting

step can be mapped to a state inside the machine. 2) It has its intension to make input

strings and retrieved strings be consistent. For example, suppose it has formed

sequences of counting the number of objects and has kept them in its memory. Suppose

the machine is given the beginning part of the counting sequence and is not given the

latter part. Then it retrieves the sequence of counting and continues counting by using

the retrieved as if the latter part keeps continuing and the latter part is consistent to the

retrieved. 3) It has an ability of forming (or devising) a new function such as solving a

new mathematics problem, and of forming a new set whose member is defined by the

new function.

The feature 3) in the above cannot be considered as any of the characteristics of recursive

functions since a new function cannot be an output of the recursive functions. Therefore

the machine is not a computer in the sense that the computer computes the recursive

functions. I think that Church’s and Turing’s thesis does not hold for a machine with a

program I have been developing if one takes the size of grain into consideration. The

machine I have been constructing does wider than what a so-called computer does.

Moreover it seems what Turing said about computation by a human is limited to

performances made using the formulated; “Turing argued that, given his various

assumptions about human computers, the work of any human computer can be taken

over by a Turing machine. Whatever sequence the human computer is computing, a

Turing machine “can be constructed to compute the same sequence” (Copeland 2020).

But it might be proper what a human computes include making his / her intension

become true; in particular, making what he / she computes be consistent to what other

human computes. The human sometimes tries to create functions (or methods) and to

get results; for example, a student, given a problem “There are two numbers. Adding

them together makes 132. The difference between the two is 14. Find the two numbers”,

constructs (or devises) a method out of methods already the student has acquired and

finds results even though the student did not get any instances of solving the problem or

any solutions to the problem. The student may form a new set of instances of the problem

in the brain. In the sense as just described, a currently available computer does not

compute as a human computes.

3.3 Meaning of a sentence

When the machine gets a sentence, it retrieves sentences already got, from its memory,

and it uses them to predict what sentences it gets continuously (or how the environment

and the interaction continue) after the sentence. In general, the more sentences the

machine gets, the more reliably the machine makes a prediction about the environment

and the interaction. When the machine gets a sentence S, the machine makes an

accurate prediction with the increased probability. The meaning of the sentence S for the

machine is the increase in the probability.

The meaning defined here includes the meaning discussed in Section 2.3. “The meaning

of a sentence” is proposed in Section 2.3 to be “a procedure that evaluates its logical

value.” The cases discussed there form a subset of the cases described in the above

paragraph, namely, the cases where the machine gets the sentence, retrieves sentences

and uses them to predict (or just get) what sentences it gets continuously. If the

prediction turns out to be correct (or consistent to the environment and the interaction),

the logical value is true. Otherwise, the logical value is false.

4. Discussion

Strings as features

Although much effort is needed to find and form features in continuing inputs, I assume

the features are formed / extracted, and a machine gets and puts the features as its

inputs and outputs. In my description of a machine, I replace features by strings to

specify inputs to and outputs from the machine. The machine gets strings through

several channels and binds them together when it gets them at the same time. The

machine finds regularities in continuous streams of strings. The meaning of strings are

with the regularities, and in particular, the designation is made by the binding.

Infinity

I do not discuss how a machine becomes to deal with the infinity or devises a way of

keeping consistency among numbers including infinite numbers. I will describe how the

machine finds the infinity and integrates it into mathematical problems in a new paper.

Grammars and most general sets

I need to make the following clearer than just described. Orders of words, grammars, are

related to how audio strings are taken out of hierarchical regularities that keep the audio

strings. The orders of the audio strings are determined so that the orders of a speaker

and those of a listener become the same, and are kept in a regularity. While the orders

become the same among various words, the orders of representatives of most general

sets, objects and actions, become to decide the orders of members of the sets. Since the

hierarchical regularities include regularities that include objects and actions on the

objects, taking out of audio strings from the hierarchical regularities become a cause of

production rules of words.

Inductive program synthesis

Kitzelmann (2009) says, in Inductive Programming: A Survey of Program Synthesis

Techniques, “In classical software engineering and algorithm design, a deductive—

reasoning from the general to the specific—view of software development is predominant.

One aspires a general problem description as starting point from which a program or

algorithm is developed as a particular solution.” and continues “Inductive programming,

on the other side, aims at developing methods based on inductive—from the specific to

the general—reasoning (not to be confused with mathematical or structural induction)

to assist in programming, algorithm design, and the development of software. Starting

point for IP methods is specific data of a problem—use cases, test cases, desirable (and

undesirable) behavior of a software, input/output examples (I/O-examples) of a function

or a module interface, computation traces of a program for particular inputs and so forth.

Such descriptions of a problem are known to be incomplete. Inductive methods produce

a generalization of such an incomplete specification by identifying general patterns in

the data. The result might be again a—more complete—specification or an actual

implementation of a function, a module, or (other parts of) a program.”

Researchers in inductive programming makes a summary, in Approaches and

Applications of Inductive Programming (2019), as “Inductive program synthesis is of

interest for researchers in artificial intelligence since the late sixties (Biermann and

others 1984). On the one hand, the complex intellectual cognitive processes involved in

producing program code which satisfies some specification are investigated, on the other

hand methodologies and techniques for automating parts of the program development

process are explored. One of the most relevant areas of application of inductive

programming techniques is end-user programming (Cypher 1993, Lieberman 2001,

Cypher and others 2010).”

I think methods / techniques developed in the field of inductive program synthesis may

be incorporated into a machine I have been constructing. In particular, it is desirable to

extract criteria / metric from their work to find / identify a regularity in many examples,

and to sort out examples into classes / categories consisting of the examples.

Bibliography

Bielecka, K. (2015). Why Taddeo and Floridi did not solve the symbol grounding problem.

J. Experimental & Theoretical Artificial Intelligence, 27, 79-93.

Biermann, A. W., Guiho, G. and Kodratoff, Y. (Eds.) (1984). Automatic Program

Construction Techniques. Macmillan.

Bringsjord, S. (2015). The symbol grounding problem … remains unsolved. J.

Experimental & Theoretical Artificial Intelligence, 27, 63-72.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-

159

Brooks, R. A. (1991). Intelligence without reason. Proceedings of the twelfth

international joint conf. on artificial intelligence. Morgan Kauffman, 569-595.

Brooks, R. A. (1993). The engineering of physical grounding. Proceedings of The

Fifteenth Annual Conference of the Cognitive Science Society, 153-154. Lawrence

Erlbaum Associates.

Brooks, R. A. and Stein, L. A. (1993). Building brains for bodies. MIT Artificial

Intelligence Laboratory Memo 1439.

Cangelosi A. and Harnad S. (2001). The adaptive advantage of symbolic theft over

sensorimotor toil: Grounding language perceptual categories. In L. Steels (Ed.) The

evolution of grounded communication, Special issue of evolution of communication, 4:1,

117-142. J. Benjamins Publ.

Chemero, A. (2009). Radical embodied cognitive science. MIT Press.

Copeland, B. J. (as of Summer 2020). The Church-Turing Thesis. In E. N. Zalta (Ed.) The

Stanford Encyclopedia of Philosophy. URL =

<https://plato.stanford.edu/archives/sum2020/entries/church-turing/>

Cypher, A. (Ed.) (1993) Watch What I Do: Programming by Demonstration. MIT Press.

Cypher, A., Dontcheva, M., Lau T. and Nichols, J. (Eds.) (2010). No Code Required:

Giving Users Tools to Transform the Web. Elsevier.

Dąbrowska, E. and Lieven, E. (2005). Towards a lexically specific grammar of children’s

question constructions. Cogn. Linguist. 16, 437–474.

David, C. (as of Spring 2020). The Chinese room argument. In E. N. Zalta (Ed.) The

Stanford Encyclopedia of Philosophy.

URL=<https://plato.stanford.edu/entries/chinese-room/>.

Fitting, M. (as of Spring 2020). Intensional Logic. In N. Zalta (Ed.) The Stanford

Encyclopedia of Philosophy. URL =

<https://plato.stanford.edu/archives/spr2020/entries/logic-intensional/>.

https://plato.stanford.edu/archives/spr2020/entries/logic-intensional/

Frege, G. (1892). Über Sinn und Bedeutung,Zeitschrift für Philosophie und

philosophische Kritik 100, 25-50.

Guasti, M. T. (2002). Language Acquisition: The Growth of Grammar. MIT Press.

Gierasimczuk, N. (2007). The problem of learning the semantics of quantifiers. In B. D.

ten Cate and H. W. Zeevat. (Eds.) Logic, Language, and Computation. LNCS, volume

4363, 117-126. Springer.

Harnad, S. (1990). The symbol grounding problem. Phys. D. 42, 335-346.

Huttenlocher, J., Vasilyeva, M., Cymerman, E., and Levine, S. (2002). Language input

and child syntax. Cognit. Psychol. 45, 337–374.

Johnson, M. (2007). The meaning of the body: Aesthetics of human understanding. U. of

Chicago Press.

Kitzelmann, E. (2010). Inductive Programming: A Survey of Program Synthesis

Techniques. In U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.) Approaches and

Applications of Inductive Programming. LNCS, volume 5812, 50-73. Springer.

Van Lambalgen, M. and Hamm, F. (2004). Moschovakis’ Notion of Meaning as applied to

Linguistics. In M. Baaz, S. Friedman, and J. Krajicek (Eds.) Logic Colloquium ‘01.

Lecture Notes in Logic, 255-280. Cambridge U. Press.

Lieberman, H. (Ed.) (2001). Your Wish is My Command: Programming by Example.

Morgan Kaufmann.

Lloyd, J. W. (1984). Foundations of Logic Programming. Springer.

Mitchell, T. M. (1997). Machine Learning. McGraw Hill Comp.

Morse, A., Herrera, C., Clowes,R., Montebelli, A. and Ziemke. T. (2011). The role of

robotic modelling in cognitive science. New Ideas in Psycol. 29(3), 312-324.

Moschovakis, Y. (1994). Sense and denotation as algorithm and value. In J.Oikkonen and

J Väänänen (Eds.) Logic Colloquium ’90. Lecture Notes in Logic, 210-249. Cambridge

U. Press.

Muggleton, S. (1991). Inductive Logic Programming. New Generation Computing, 8 (4)

295-318.

Nelson, K. (1971). Accommodation of visual tracking patterns in human infants to object

movement patterns. J. Experimental Child Psychology, 12(2), 182-96.

Pfeifer, R. and Iida, F. (2003). Embodied Artificial Intelligence: Trends and Challenges.

LNCS, volume 3139, 1-26. Springer.

Pfeifer, R. and Scheier, C. (1999). Understanding Intelligence. MIT Press.

Piaget, J. (1952). The Origins of Intelligence in Children. International Univ. Press.

Schmid, U. and Raedt, L. D. (2019). Approaches and Applications of Inductive

Programming. URL

=<https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=19202>

Searle, J. R. (1980). Minds, Brains and Programs. Behavioral and Brain Sciences, 3, 417–

457.

Summers, P. D. (1977). A methodology for LISP program construction from examples. J.

ACM, 24(1), 161–175.

Szymanik, J. (2004). Computational Semantics for Monadic Quantifiers in Natural

Language, MA Thesis, Warsaw University.

Taddeo, M. and Floridi, L. (2005). Solving the Symbol Grounding Problem: A Critical

Review of Fifteen Years of Research. J. Experimental & Theoretical Artificial

Intelligence, 17, 419-445.

Tichy, P. (1969). Intension in terms of Turing Machines. Studia Logica, XXIV, 7–23.

Varela, F. J., Maturana, H. R. and Uribe, R. (1974). Autopoiesis: the organization of living

systems: its characterization and a model. BioSystems 5, 187-196.

Ziemke, T. (2016). The body of knowledge: On the role of the living body in grounding

embodied cognition. BioSystems 148, 4-11.

