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1. Introduction 

 

In this note I briefly summarize much research conducted for making a machine acquire 

meanings of symbols, and explain a way we can take to construct a machine with its 

intension and having meanings of strings. I make the machine in such a way that it gets 

input strings through four channels and finds regularities in them. When the machine 

gets a new string, it retrieves a string of a regularity that matches the input before the 

new input string ends. The new input string continues and the retrieved string also 

continues. The machine sees if the continuing input string matches the continuing 

retrieved string. If it sees the matching, namely the inputs and the retrieved are 

consistent to each other, it is said that the machine becomes able to predict how the 

string continues, and the regularity found describes the world outside the machine. 

 

The intension of the machine is to make predictions, and to do so, the machine tries to 

find regularities in input strings and to achieve the consistency between a new input 

string and a string kept as the regularity. In general, the more input strings the machine 

gets and keeps in its memory, the more reliable regularities the machine is able to form. 

As a result of forming the more reliable regularities, the machine is able to make a more 

accurate prediction. The meaning of a string is an increase in the probability with which 

the machine, given a new string, accurately predicts how the new string continues. When 

the machine has the meaning of the string (the machine accurately predicts the string 

continues), it becomes to say, given a new string, how the new string would continue if 

the new string stops continuing. 

 

2. Developing a machine that has meanings of strings 

 

2.1 Rules, or syntax that a current machine follows 

 

It is true that a current machine on which a program runs has an initial state, and 

changes states from one state to the next state until a final state. Or the machine with 

the program may run forever. Any change from one state to the next state is determined 

at the time the program starts to run. A sequence of states from the initial state to the 

final state may be different depending on input data after the program gets, but the 

dependency is also determined at the time the program starts to run. 

 

It is also true that a current machine with a program is “… by definition a device that 



manipulates formal symbols. These are usually described as 0s and 1s, though any old 

symbol will do as just as well. … Computation, so defined, is a purely syntactical set of 

operations, in the sense that the only features of the symbols that matter for the 

implementation of the program are the formal or syntactical features”. 

 

Formal symbol 

 

When a programmer writes a program, he / she uses symbols (letters, words, and 

sequences of words) so that 

1) the programmer allocates areas in a program space and specifies operations on 

values stored in the areas. 

2) the programmer specifies functions and variables in such a way that each specified 

function takes which and which variables as its function variables. 

3) the programmer specifies logical relations and variables in such a way that each 

logical relation holds among which and which variables. 

In any case the programmer specifies what relation holds among which and which 

variables by using the following two rules: 1) the order of letters decides a word, and 2) 

syntax of words decides the order of operations, inputs and outputs of each function, and 

what logical relation holds among variables. 

 

2.2 Meaning of symbols – Chinese room argument 

 

Stanford Encyclopedia of Philosophy summarizes the Chinese room argument by Searle 

as follows: “Searle imagines himself alone in a room following a computer program for 

responding to Chinese characters slipped under the door. Searle understands nothing of 

Chinese, and yet, by following the program for manipulating symbols and numerals just 

as a computer does, he sends appropriate strings of Chinese characters back out under 

the door, and this leads those outside to mistakenly suppose there is a Chinese speaker 

in the room”. 

 

The summary continues “The narrow conclusion of the argument is that programming a 

digital computer may make it appear to understand language but could not produce real 

understanding. Hence the “Turing Test” is inadequate. Searle argues that the thought 

experiment underscores the fact that computers merely use syntactic rules to 

manipulate symbol strings, but have no understanding of meaning or semantics. The 

broader conclusion of the argument is that the theory that human minds are computer-



like computational or information processing systems is refuted. Instead minds must 

result from biological processes; computers can at best simulate these biological 

processes.” 

 

For example, a computer, given a string “五足す五”, invokes a program (or sees an 

instruction) that tells consulting a Chinese-English dictionary by comparing a string “五”, 

“五足す”, or “五足す五” and words in the dictionary to see if the dictionary has it. “五” is 

in the dictionary. The program (the instruction) tells extracting “5”. Next, the computer 

again invokes the program that tells comparing a string “足す ” and words in the 

dictionary. The computer extracts “plus”. Then the program tells “5 plus 5” is an English 

sentence corresponding to the string “五足す五”, and outputs it. Whenever the computer, 

given a Chinese string, outputs an English string that is the same as a human translator, 

given the same Chinese string, writes. Then the computer appears to understand 

Chinese and English as the human translator. However, the computer does not 

understand Chinese or English after it gets Chinese strings and then outputs English 

strings many times. 

 

To make a machine understand Chinese sentences, I construct the machine in such a 

way that the machine has its original program and the original program acquires firstly 

English sentences with their meanings and secondly how to translate Chinese sentences 

into English. For acquiring the sentences with their meanings, it binds inputs through 

four channels; inputs through one channel are English sentences in quotations, inputs 

through the second and the third channel are strings made by sensor and motor devices, 

and inputs through the forth channel describe internal states of the program. For 

example, a meaning of strings, “there are 5 ○” ｛○○○○○｝, is that the machine, given 

the strings, confirm 5○ in ｛○○○○○｝. The machine firstly acquires a way of seeing 

5○ in ｛○○○○○｝, and binds the way and “there are 5○” together. Then the machine 

acquires “五” pointing to the acquired. (I claim the strings have other meanings than just 

described, and explain them later in the note.) 

 

2.3 Meaning of a sentence 

 

A procedure as the meaning of a sentence  

 

Several approaches are taken toward developing a machine that understands the 

meaning of a sentence. It seems to me that Gierasimczuk (2007) gives us a good summary 



of one approach to investigate into the meaning of a sentence. It says “According to an 

old philosophical idea, the meaning of a natural language construction can be identified 

with a representation of its denotation [Frege 1892]. This thought has been developed in 

the direction of identifying the meaning of an expression with a procedure for finding its 

extension [Tichy 1969, Moschovakis 1990, van Lambalgen, Hamm 2004, Szymanik 2004]. 

In the case of words: the meaning of “Poland” is the procedure of checking if the object 

in question satisfies conditions of being Poland. In the case of sentences: the meaning is 

a procedure for finding a sentence’s logical value. The meaning of “Alice has a cat.” is a 

procedure for checking if Alice really has a cat. Therefore, we can say that someone 

understands a sentence (knows its meaning), if he knows a procedure for checking 

whether it is true or not”. 

 

I think Gierasimczuk and others are right if 1) the meaning of a sentence is limited in a 

narrow scope and 2) the procedure is assumed to be developed. Limitations they place 

are the following; 1-1) An intention of a speaker as well as a listener is out of their scope. 

When a speaker gives a sentence to a listener, the speaker has the intention of giving 

the sentence, and the listener, getting the sentence, has the intention to satisfy the 

intention of the speaker (or do something else). The listener, given the sentence Ss, tries 

to retrieve the procedure to evaluate the sentence. But it often happens the listener does 

not retrieve the right procedure, and tries finding / devising a procedure Pn to get the 

logical value of the sentence Ss. Trying to get the procedure can be the meaning of the 

sentence Ss for the listener (and may be for the speaker). It also happens the listener 

retrieves the procedure and evaluates the sentence Ss by performing the procedure, but 

gets the logical value different from that by the speaker (and others). This case can also 

become the meaning of the sentence Ss for the listener. 1-2) Binding a sentence and 

sensorimotor features (or states) together (or grounding a sentence to its environment) 

is out of their scope. (I believe getting and putting features (or strings, words, sentences) 

through several channels, and binding them together are inevitable to make the sentence 

have its meaning. In the next section, I discuss symbol grounding problem and binding 

strings together.) 

 

For lifting the limitation described under item number 1-1) in the above, I think it 

desired to extend the process of evaluating a sentence by integrating the following; 1-1) 

collect sentences and procedures each of which evaluates the logical value of each 

sentence and 1-2) devise a procedure Pn out of the collected sentences and the procedures. 

1-3) keeping the difference between the evaluation result by the listener and that by the 



speaker with the following: the sentence, objects neighboring to the sentence, and the 

procedure the listener uses. Later, try to achieve the consistency between the result by 

the speaker and that by the listener (in other words, resolving the difference). 

 

For example, suppose a child is given a sentence “2 and 3 is the same as 5”, the child 

may not have a procedure to see if the sentence is true. Then the child may take 

sentences with procedures out of his / her memory, and combines the procedures to 

evaluate the sentence; Put as many blocks as asked, such as “put 2 blocks; put one and 

put the second one on top of the other” and “put 3 blocks; put one, put the second one on 

top of the first one, and put the third one on top of the two blocks”. Put blocks on top of 

other blocks already placed such as “put 2 blocks on top of 3 blocks already placed”. “See 

the height of blocks put is the same as that of blocks put”. For the child, getting such 

procedures contributes to devising a way to see if “2 and 3 is the same as 5”. 

 

The same as the above can be said for a machine; the meaning of strings is a procedure 

that the machine evaluates the logical value of the strings. When the machine does not 

retrieve the procedure to evaluate the logical value, the meaning of getting the strings 

become collecting procedures (bunch of strings) so that the machine devises a new 

procedure out of the procedures to see if the given strings are true or not. When the 

logical value is different from that by other machine, it is meaningful for the machine to 

get the sentence because the machine keeps the sentence, objects neighboring the 

sentence, and the procedure, and later it tries to see why the result is different from that 

by the other, and to develop a procedure to cover the two cases. 

 

Intentional logic (or other formal system) 

 

Some researchers take an approach for representing the meaning of a sentence more 

than its designation, and study intentional logic. Fitting (2020) explains motivation 

behind the study of intentional logic “There is an obvious difference between what a term 

designates and what it means. At least it is obvious that there is a difference. In some 

way, meaning determines designation, but is not synonymous with it. After all, “the 

morning star” and “the evening star” both designate the planet Venus, but don’t have the 

same meaning. Intentional logic attempts to study both designation and meaning and 

investigate the relationships between them.” 

 

Fitting continues to say “Contexts in which extension is all that matters are, naturally, 



called extensional, while contexts in which extension is not enough are intentional 

Mathematics is typically extensional throughout—we happily write “1+4=2+3” even 

though the two terms involved may differ in meaning.  …  In classical first-order logic 

intension plays no role. It is extensional by design since primarily it evolved to model the 

reasoning needed in mathematics. Formalizing aspects of natural language or everyday 

reasoning needs something richer. Formal systems in which intentional features can be 

represented are generally referred to as intentional logics.” 

 

It seems the study of intentional logic shows that 1) one finds cases where the one is not 

able to represent the meaning in a formal system already developed while the one studies 

more of the meaning of a sentence than before and 2) the one sees the necessity to refine 

/ revise the formal system and represents the meaning in the refined / revised system. 

Although a formal system in general does not allow the one to describe sensorimotor 

features in the meaning of a sentence since logical symbols are not bound to the 

sensorimotor features as explained in the next section, the one becomes able to explicitly 

describe more of the meaning in the refined system than before. 

 

The fact that the one finds cases where the one is not able to represent the meaning of a 

sentence in a formal system implies the one finds the difference between the represented 

and the meaning of the sentence (or some in the meaning is missing in the represented). 

The difference is seen (or detected) when some phenomena (or features / aspects) recalled 

(or remembered) by the sentence cannot be mapped to the represented. In other words, 

the one finds inconsistency between the represented and the phenomena recalled (or 

carried) by the sentence. 

 

Then I think it is required to make the machine find (or detect) the missing in the 

represented (or inconsistency between the input and the represented) and have a method 

to fulfill the missing (or resolve the inconsistency) in order to construct a machine that 

understands the meaning of a sentence. 

 

What I have been trying to is make the machine form hierarchical constructs / 

regularities when the machine finds inconsistency between the input and the retrieved. 

The constructs describe both cases where the input are not mapped to the retrieved and 

cases where the input are mapped to the retrieved, and the constructs include a way 

from the former cases to the latter cases. 

 



2.4 Meanings of symbols – Symbol grounding problem 

 

Symbol grounding problem has been seriously studied for the purpose of developing a 

machine that understands the meanings of a sentence and behaves intelligently. Taddeo 

and Floridi (2005) briefly states the problem as follows; “The symbols are merely a part 

of a formal, notational convention agreed upon by its users. One may then wonder 

whether an artificial agent, such as a robot, may ever be able to develop an autonomous, 

semantic capacity to connect its symbols with the environment in which the artificial 

agent is embedded interactively.” 

 

When Harnad (1990) introduced the problem, he asked “How can the semantic 

interpretation of a formal symbol system be made intrinsic to the system, rather than 

just parasitic on the meanings in our heads? How can the meanings of the meaningless 

symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded 

in anything but other meaningless symbols?” Cangelosi and Harnad (2001) continue 

describing the problem; “The symbols, in other words, need to be connected directly to 

(i.e., grounded in) their referents; the connection must not be dependent only on the 

connections made by the brains of external interpreters like us. Just the symbol system 

alone, without this capacity for direct grounding, is not a viable candidate for being 

whatever it is that is really going on in our brains when we think meaningful thoughts.” 

 

Reviewing much work toward solving the symbol grounding problem, Taddeo and Floridi 

(2005) state the requirements the solution must satisfy; “the interpretation of the 

symbols must be intrinsic to the symbol system itself, it cannot be extrinsic, that is, 

parasitic on the fact that the symbols have meaning for, or are provided by, an 

interpreter.” and put forth two conditions: “a) no form of innatism is allowed; no semantic 

resources (some virtus semantica) should be presupposed as already pre-installed in the 

artificial agent; and b) no form of externalism is allowed either; no semantic resources 

should be uploaded from the “outside” by some deus ex machina already semantically-

proficient.” They continue to state “Of course, points (a)-(b) do not exclude the possibility 

that c) the artificial agent should have its own capacities and resources (e.g. 

computational, syntactical, procedural, perceptual, educational etc., exploited through 

algorithms, sensors, actuators etc.) to be able to ground its symbols.” They review eight 

strategies proposed for the solution of the SGP in the last fifteen years, and say 

the conclusion is that none of them satisfies the conditions put forth in the above. 

 



The problem is still open as of 2015 (Bielecka 2015, Bringsjord 2015). It seems that 

assuming / considering the existence of two separate worlds makes the problem difficult; 

one is a formal symbol system and the other is the environment (including interactions 

between the symbol system and the environment). The formal symbol system is one of 

the latest results in the history of developing concepts / thoughts. Words / sentences seem 

to have emerged to share something (or phenomena) in one’s brain with that in another 

one’s brain at the very early human history. If we try to get hints from language 

acquisition by children to guess how the emergence occurs, it seems improper to me to 

assume the two separate worlds. During some development stage an infant utters 

meaningful voices when the infant does something on objects and the infant apparently 

has acquired basic behaviors of objects (such as roll, fall, and stay) before the infant uses 

words describing the behaviors of the objects. The infant appears to share how the objects 

behave with its parent and to have the parent do something by uttering voices so that 

the objects behave as the infant knows (or images). Another phenomena we can get hints 

to guess the emergence of sentences is that a child raises questions such as “what is this”, 

“where is a candy”, after the child acquires various words with their meanings. Those 

questions seem to consist of relations between objects the child is dealing with and the 

words already acquired by the child. 

 

Therefore, it seems reasonable to develop a machine that have words with their 

meanings by introducing a stage where the machine makes utterances to share 

something occurring inside the machine with another machine or a human before the 

machine forms words / sentences to mean something. I think a proper way to investigate 

is how a machine forms concepts, in a parallel and layered way, that integrate the 

environment, the interactions with the environment, and audio inputs / verbal outputs 

(or sequences of audio and verbal features). 

 

I try constructing a machine that binds features extracted and serialized in the temporal 

order through several channels, and finds regularities in them, assuming the features 

are extracted and serialized. When the machine finds the regularities, it tries to have 

another machine do the same by using utterances. If the utterances keep to be the same 

for one regularity, the correspondence between the utterances and the regularity is kept 

as a regularity and the utterances become meaningful voices (and then words). Moreover 

the machine makes hierarchical regularities that cover both cases that follow 

regularities already formed and cases that do not follow the regularities. An example of 

a hierarchical regularity is the one that includes auditory / verbal features, “where is a 



candy”. When the machine is asked to do something on some object by someone, the 

object is usually within a visual scope of the machine. But there are cases where the 

object is not in the visual scope. Then the machine forms a regularity to look for the 

object and/or asks the one using audio features “where is the object”. (A motivation to 

look for the object and/or to raise the question is caused by the intension of the machine, 

which I discuss later in this note.) 

 

After the machine has acquired how objects behave when the machine moves the objects 

and sentences to describe the motions and behaviors, the machine acquires the number 

system. It firstly gets and puts features though several channels in the form of strings 

such as “4 ○” ｛  ○○○○  ｝. “4” is auditory feature in the first place and then becomes 

a member of the number. (I describe how the machine devises the number system, in a 

separate paper, to achieve consistency concerning repetitions of motions (or actions) 

between the machine at one time and that at a later time and between the machine and 

another machine. 

 

A problem of seeing features in continuing inputs (and / or extracting features from the 

continuing inputs) is open. Researchers in robotics, AI, and others have been making 

much effort to solve the problem. 

 

2.5 Embodiment 

 

Embodiment has been considered to be a key to make an intelligent robot, and symbols 

were expected to be connected to the meanings through interacting with the environment 

if any symbols are used by the embodied robot. For example, Pfeifer and Scheier (1999) 

say “The problem of embodiment refers to the fact that abstract algorithms do not 

interact with the real world. Rodney Brooks forcefully argued that intelligence requires 

a body (Brooks 1991a, 1991b). Only if a system is embodied we know for sure that it is 

able to deal with the real world. Moreover, systems that are not embodied all suffer from 

the symbol grounding problem.” 

 

Ziemke (2016) reviews research activities to make a system embodied; “Embodied 

approaches to AI – using robotic or simulated ‘autonomous agents’ – at least at a first 

glance, allow computer programs and the representations they are using, if any, to be 

grounded in interactions with the physical environment through the robot/agent 

platform’s sensorimotor capacities. Brooks, for example, one of the pioneers of embodied 



AI, formulated what he called “the two cornerstones of the new approach to Artificial 

Intelligence, situatedness and embodiment” (Brooks, 1991). Embodiment from this 

perspective simply means that “robots have bodies and experience the world directly – 

their actions are part of a dynamic with the world and have immediate feedback on their 

own sensations” (Brooks, 1991). According to Brooks, such systems are physically 

grounded, and hence internally “everything is grounded in primitive sensor motor 

patterns of activation” (Brooks, 1993). Situatedness, accordingly, means that “robots are 

situated in the world – they do not deal with abstract descriptions, but with the here and 

now of the world directly influencing the behavior of the system” (Brooks, 1991).” 

 

Although much effort has been made to develop an embodied robot and to see how the 

robot have symbols be grounded and be meaningful, Pfeifer and Iida (2003) describe the 

state of research as of the year 2003; “One of the big unresolved issues to date is the one 

of symbol processing: How is it possible that humans have the capability for symbol 

processing? More precisely we would have to ask how it is possible that humans can 

behave in ways that it makes sense to describe their behavior as “symbolic”, irrespective 

of the underlying mechanisms, which might involve explicit symbol processing or not. 

The question is very broad and of general importance: it is about how organisms can 

acquire meaning, how they can learn about the real world, and how they can combine 

what they have learned to generate symbolic behavior, a problem known as the “symbol 

grounding problem.”. There is general agreement that learning will make substantial 

contributions towards a solution. However, learning alone will not suffice – embodiment 

must be taken into account as well.” 

 

Ziemke (2016), siting from the work by Chemero, describes embodied cognitive science 

have not resolved the issue as stated by Pfeifer and Iida (2003); “Chemero’s (2009) 

characterization of the current embodied cognition research landscape, that there 

currently are at least two very different positions/traditions that are both referred to as 

‘embodied cognitive science’. One of these, which Chemero refers to as radical embodied 

cognitive science, is grounded in the anti-representationalist and anti-computationalist 

traditions of eliminativism, American naturalism, and Gibsonianecological psychology. 

The other, more mainstream version of embodied cognitive science, on the other hand, in 

line with what was referred to as robotic functionalism above, is derived from traditional 

representationalist and computationalist theoretical frameworks, and therefore also still 

is more or less compatible with these – as illustrated maybe most prominently by the 

notion of symbol/representation grounding, as opposed to the more radical position of 



anti-representationalism. 

 

The position of radical embodied cognition, according to Chemero (2009), can be 

summarized in two positive claims and one negative one: 

1. Representational and computational views of embodied cognition are wrong. 

2. Embodied cognition should be explained using a particular set of tools T, including 

dynamical systems theory. 

3. The explanatory tools in set T do not posit mental representations.” 

 

Facing the difficulty to construct a robot that has representations / models of its 

environment be grounded and / or use symbols that have meanings, some researchers 

(Johnson 2007, Ziemke 2016), referring to works in synthetic biology, propose an 

approach to overcome the difficulty; For example Johnson (2007) says “In retrospect I 

now see that the structural aspects of our bodily interactions with our environments 

upon which I was focusing were themselves dependent on even more submerged 

dimensions of bodily understanding. It was an important step to probe below concepts, 

propositions, and sentences into the sensorimotor processes by which we understand our 

world, but what is now needed is a far deeper exploration into the qualities, feelings, 

emotions, and bodily processes that make meaning possible.”, and Ziemke (2016) says 

“modeling organisms as layered networks of bodily self-regulation mechanisms can make 

significant contributions to our scientific understanding of embodied cognition.” 

 

It seems that the difficulty remains even if research into sensorimotor processes to 

construct models of self-regulation mechanisms is conducted because the symbols 

remain separated from the models of the body unless a way of how symbols emerge out 

of something (possibly units made out of sensorimotor mechanisms) is incorporated into 

bodily self-regulation mechanisms. 

 

I think it possible to overcome the difficulty. A way is to construct a machine that gets 

continuing inputs and finds regularities in the inputs to form the regularities, and tries 

to keep consistency among the inputs and the regularities formed. But cases occur where 

some inputs are not consistent to regularities formed and then the machine forms 

hierarchical regularities to achieve consistency among the regularities and the inputs. 

The machine incorporates features of audio signals in regularities and then the audio 

features become meaningful sentences. Here the machine is not a computer but it has 

states and changes them from one to the next. Importantly it has no symbols, from the 



beginning, that need to be grounded. A human writes a program running on the machine, 

and programming constructs such as constants, variables, instructions, are for specifying 

states and changes of the states. Each state consists of beginning, intermediate, and end 

of actions such as getting inputs, forming regularities, retrieving regularities formed. 

 

2.6 Achieving consistency as an intension 

 

Intension of a robot has become got much attention by people since robots are introduced 

in various fields such as care robots and autonomous cars. A human could do his / her 

role with ease in the fields when he / she is able to expect what to do and how to behave. 

The human tend to expect what and how the robot will do next when he / she sees actions, 

verbal outputs, and/or some deed by the robot. Therefore it becomes important to show 

to the human what and how the robot is going to do. Then the human regards the robot 

to have its intension. 

 

A robot studied / developed in such fields shows its intension that consists of values 

produced by a set of functions defined (or procedures or logical sentences written) by a 

human. Input values to the functions are determined by the environment. The intension 

shown by the robot appears to be intrinsic as long as the input values are within the 

domain of the functions because the robot, given the input values, gets output values of 

the functions which show future behaviors of the robot. (In practice, the range the robot 

moves around is limited into the environment where function values are kept within the 

domain of the function.) 

 

It seems that intension of a machine not just appears intrinsic but becomes really 

intrinsic when the machine gets values that are not within the domain of the functions 

and the machine is able to devise a method to deal with such values. In general the 

machine is considered to have its intension when it has some goal and 1) it does a way 

to the goal if it has the way 2) it devises a way to the goal if it does not have the way. 

Devising the way becomes a new goal for the machine to achieve and may be carried out 

1) by firstly seeing the machine does not have the way, 2) by secondly setting a new goal 

(explicitly or implicitly) to find / form the way: revising functions that the machine 

already has, forming a new function (or a method) out of functions (or methods) that the 

machine has, or employing some other way to achieve the new goal, and 3) by executing 

the way found. 

 



I have been trying to construct a machine that has its intrinsic intension although the 

intension is very limited. A human writes a machine program, and then the program 

tries to have its intension become true; namely the program predicts, given a new string 

(namely sensorimotor features), how the new string continues. The intension is satisfied 

when the predicted strings are consistent to the new continuing strings. 

 

For example, after the machine gets various inputs and forms regularities, the machine 

gets the following inputs (an instance of a math problem); “There are two numbers. 

Addition of the two numbers is 100. The difference of the two numbers is 10. Find the 

two numbers.” And gets the following (an instance of the way to solve the math problem); 

“Subtract 10 from 100 is 90. Divide 90 by 2 is 45. Add 10 to 45 is 55. One number is 45. 

The other number is 55.” Then the machine gets a new instance of the math problem, 

“There are two numbers. Addition of the two numbers is 210. The difference of the two 

numbers is 18. Find the two numbers.” The machine makes a prediction (or solves the 

problem); “Subtract 18 from 210 is 192. Divide 192 by 2 is 96. Add 18 to 96 is 104. One 

number is 96. The other number is 104.” The strings predicted become consistent to the 

continuing input strings. 

 

A hierarchical regularity as a means to achieve consistency 

 

Various (autonomous) mechanisms may construct systems that achieve (or keep) 

consistency among two things that are not initially consistent with each other. 

Constructing a hierarchical regularity is a result of achieving consistency among the two 

things; one is cases where a regularity already formed holds and the other is cases where 

the regularity does not hold. The hierarchical regularity integrates the two cases. For 

example, suppose a regularity that objects are bound to audio features (or strings) is 

formed. But cases where objects are not bound to strings occur, and are not consistent to 

the regularity. Then the two cases are integrated to form a hierarchical regularity, and 

the regularity is bound to audio features “what is this” or “what is the name of this”. For 

another example, suppose a regularity an object is within a visual / other sensor’s scope 

when audio features specify to do something on the object is formed. But cases where an 

object is not within a visual / sensor’s scope occur. Then the two cases is integrated to 

form a hierarchical regularity. Audio features “where is the object” are bound to the 

hierarchical regularity. 

 

3. A machine and a computer 



 

3.1 The size of grain, a set of values, and a series of steps 

 

The size of grain matters; People have a concept of a tube of a bicycle, and takes it as a 

whole grain. People have also a concept of molecules of tube rubber, and considers the 

molecule to be a whole grain. They have the two concepts separately, and takes relations 

between them into their consideration if necessary. 

 

People have a concept of a computational step and regards it as a single manipulation 

when they develop computer programs and run them on a computer. But a designer of a 

compiler (a program that translates a program written in a programming language into 

a program in a machine language) looks inside a computational step, and sees each 

computational step consists of several machine steps (a machine step is specified by a 

machine language). An electronic engineer sees electronic circuits; for example, he 

designs an adder which is an electronic circuit specialized for adding two numbers in 

digits. The adder consists of logic gates. Each gate in the adder performs logical 

operations on two digits such as “1 and 1 is 1”, “1 and 0 is 0”, or “1 or 0 is 1”. An engineer 

regards a logic gate as a whole grain. 

 

Similarly a set of values in a memory space can be considered as a state (or a pattern), 

and the set of the values can be mapped to a state outside of a machine. Each value in 

the set is manipulated by program steps, but a set of values can be considered to be taken 

or put by one action of the machine. For example, a string of audio signals (the set of 

values) is compared to various strings of audio signals (sets of values) stored in a memory 

by an action of comparing two audio signals although the action uses a sequence of 

program steps. 

 

For another example, a bundle of values (or a string) “Find the number.” becomes a target 

of comparison, and the bundle is compared to many bundles stored in a memory. When 

the machine finds the matched bundle, it retrieves the bundle with bundles following, 

and executes the bundle and then the bundles. In other words, the machine invokes a 

sequence of mathematical steps such as “Subtract 18 from 210 is 192.” One mathematical 

step is considered a single manipulation, but each mathematical step consists of many 

program steps. When people place their focus on mathematical steps, they tries to trace 

mathematically correct steps. On the other hand, they sees program codes to execute one 

mathematical step when they place their focus on how the codes written by a 



programming language conducts the mathematical step. 

 

3.2 A machine conducts more than a so-called computer 

 

A machine on which I have written and run a program is a so-called computer. But the 

machine I have been trying to construct has the following features: 1) It has states each 

of which can be mapped to an instance of the interaction between the machine and the 

environment. Changes from one state to the next can also be mapped to changes of the 

interaction. Here one state consists of many values stored in memory of the machine, 

and one change is performed by many programming steps. When one takes the size of 

grain into consideration, many values can become one state, and many steps can be one 

change. For example, counting the number of objects consists of a sequence of counting 

steps, the machine got the sequence and kept the sequence for later use. Each counting 

step can be mapped to a state inside the machine. 2) It has its intension to make input 

strings and retrieved strings be consistent. For example, suppose it has formed 

sequences of counting the number of objects and has kept them in its memory. Suppose 

the machine is given the beginning part of the counting sequence and is not given the 

latter part. Then it retrieves the sequence of counting and continues counting by using 

the retrieved as if the latter part keeps continuing and the latter part is consistent to the 

retrieved. 3) It has an ability of forming (or devising) a new function such as solving a 

new mathematics problem, and of forming a new set whose member is defined by the 

new function. 

 

The feature 3) in the above cannot be considered as any of the characteristics of recursive 

functions since a new function cannot be an output of the recursive functions. Therefore 

the machine is not a computer in the sense that the computer computes the recursive 

functions. I think that Church’s and Turing’s thesis does not hold for a machine with a 

program I have been developing if one takes the size of grain into consideration. The 

machine I have been constructing does wider than what a so-called computer does. 

 

Moreover it seems what Turing said about computation by a human is limited to 

performances made using the formulated; “Turing argued that, given his various 

assumptions about human computers, the work of any human computer can be taken 

over by a Turing machine. Whatever sequence the human computer is computing, a 

Turing machine “can be constructed to compute the same sequence” (Copeland 2020). 

But it might be proper what a human computes include making his / her intension 



become true; in particular, making what he / she computes be consistent to what other 

human computes. The human sometimes tries to create functions (or methods) and to 

get results; for example, a student, given a problem “There are two numbers. Adding 

them together makes 132. The difference between the two is 14. Find the two numbers”, 

constructs (or devises) a method out of methods already the student has acquired and 

finds results even though the student did not get any instances of solving the problem or 

any solutions to the problem. The student may form a new set of instances of the problem 

in the brain. In the sense as just described, a currently available computer does not 

compute as a human computes. 

 

3.3 Meaning of a sentence 

 

When the machine gets a sentence, it retrieves sentences already got, from its memory, 

and it uses them to predict what sentences it gets continuously (or how the environment 

and the interaction continue) after the sentence. In general, the more sentences the 

machine gets, the more reliably the machine makes a prediction about the environment 

and the interaction. When the machine gets a sentence S, the machine makes an 

accurate prediction with the increased probability. The meaning of the sentence S for the 

machine is the increase in the probability. 

 

The meaning defined here includes the meaning discussed in Section 2.3. “The meaning 

of a sentence” is proposed in Section 2.3 to be “a procedure that evaluates its logical 

value.” The cases discussed there form a subset of the cases described in the above 

paragraph, namely, the cases where the machine gets the sentence, retrieves sentences 

and uses them to predict (or just get) what sentences it gets continuously. If the 

prediction turns out to be correct (or consistent to the environment and the interaction), 

the logical value is true. Otherwise, the logical value is false. 

 

4. Discussion 

 

Strings as features 

 

Although much effort is needed to find and form features in continuing inputs, I assume 

the features are formed / extracted, and a machine gets and puts the features as its 

inputs and outputs. In my description of a machine, I replace features by strings to 

specify inputs to and outputs from the machine. The machine gets strings through 



several channels and binds them together when it gets them at the same time. The 

machine finds regularities in continuous streams of strings. The meaning of strings are 

with the regularities, and in particular, the designation is made by the binding. 

 

Infinity 

 

I do not discuss how a machine becomes to deal with the infinity or devises a way of 

keeping consistency among numbers including infinite numbers. I will describe how the 

machine finds the infinity and integrates it into mathematical problems in a new paper. 

 

Grammars and most general sets 

 

I need to make the following clearer than just described. Orders of words, grammars, are 

related to how audio strings are taken out of hierarchical regularities that keep the audio 

strings. The orders of the audio strings are determined so that the orders of a speaker 

and those of a listener become the same, and are kept in a regularity. While the orders 

become the same among various words, the orders of representatives of most general 

sets, objects and actions, become to decide the orders of members of the sets. Since the 

hierarchical regularities include regularities that include objects and actions on the 

objects, taking out of audio strings from the hierarchical regularities become a cause of 

production rules of words. 

 

Inductive program synthesis 

 

Kitzelmann (2009) says, in Inductive Programming: A Survey of Program Synthesis 

Techniques, “In classical software engineering and algorithm design, a deductive—

reasoning from the general to the specific—view of software development is predominant. 

One aspires a general problem description as starting point from which a program or 

algorithm is developed as a particular solution.” and continues “Inductive programming, 

on the other side, aims at developing methods based on inductive—from the specific to 

the general—reasoning (not to be confused with mathematical or structural induction) 

to assist in programming, algorithm design, and the development of software. Starting 

point for IP methods is specific data of a problem—use cases, test cases, desirable (and 

undesirable) behavior of a software, input/output examples (I/O-examples) of a function 

or a module interface, computation traces of a program for particular inputs and so forth. 

Such descriptions of a problem are known to be incomplete. Inductive methods produce 



a generalization of such an incomplete specification by identifying general patterns in 

the data. The result might be again a—more complete—specification or an actual 

implementation of a function, a module, or (other parts of) a program.” 

 

Researchers in inductive programming makes a summary, in Approaches and 

Applications of Inductive Programming (2019), as “Inductive program synthesis is of 

interest for researchers in artificial intelligence since the late sixties (Biermann and 

others 1984). On the one hand, the complex intellectual cognitive processes involved in 

producing program code which satisfies some specification are investigated, on the other 

hand methodologies and techniques for automating parts of the program development 

process are explored. One of the most relevant areas of application of inductive 

programming techniques is end-user programming (Cypher 1993, Lieberman 2001, 

Cypher and others 2010).” 

 

I think methods / techniques developed in the field of inductive program synthesis may 

be incorporated into a machine I have been constructing. In particular, it is desirable to 

extract criteria / metric from their work to find / identify a regularity in many examples, 

and to sort out examples into classes / categories consisting of the examples. 
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