

Say My Innate Capabilities in a Natural Language 1/3

30 September 2020

Kenzo Iwama

Abstract

A human uses a programming language and writes a program that will say

what the program does, in strings that the program will acquire. The program

does not see any program code written by the human but it says what the

program code conducts while it gets input strings and makes output strings.

It finds regularities in the input and output strings, stores the regularities,

and later retrieves regularities that match new inputs, for applying them to

generate strings that would follow the new inputs.

The program gets input strings through four channels, and it binds them

together when it gets them at the same time. While the program finds many

regularities and applies regularities to new inputs, it forms a way Wn of

making regularities out of inputs as a new regularity. The program gives

strings Sr to have another program Pa do Sr by applying a regularity Rr

assuming that Pa has formed the regularity Rr. If the program Pa is not able

to do it, the program tries to have the program Pa do the way Wn, namely

make the regularity Rr so that the program Pa becomes able to apply the

regularity Rr for doing Sr. The program binds the way Wn and strings Sw

together, and gives Sw to have Pa do the way Wn. Here, the program has

formed a regularity of having Pa do Wn to make Rr if the program Pa is not

able to do Rr.

Since 1) the innate (or original) capability forms the way Wn, and 2) the

program says the way Wn in strings Sw that the program aquires after it runs

when the program tries to have the other program Pa do the way Wn, the

program says its innate capability in strings Sw that it gets after it runs.

1. Introduction

This paper describes a case where a program becomes to say its innate (or original)

capability in strings acquired after it runs. The capability is written in a programming

language by a human, and the strings are given in a language other than the

programming language. This section describes points of what and how our program says

(or describes) its innate capability in English strings.

1.1 Sets and Representatives (or Regularities)

The program gets input strings through four channels and stores them in its memory. It

binds strings together when it gets them through the channels at the same time. Strings

through one channel (the first channel) are with quotations “ “, and strings through the

other three are without quotations. The program sequencially gets input strings, and

stores them in the sequence as it gets. It places a string (next) between two strings when

it gets the two strings, one string and the next string in a sequence. The program finds

regularities (or forms sets and their representatives) in sequences of strings stored in

the memory, and adds strings ［ ］at the start and the end of each regularity.

The program conducts a cycle of three steps; at one step it does as it is written in the

programming language, namely, gets input strings, retrieves regularities that match

current inputs, and tries to find relations between sub strings of the input strings and

find regularities in the input and retrieved regularities, at the next step it does

regularities, and outputs strings, at the third step it does strings through the forth

channel, namely, either continue to do regularities currently doing or to stop to do the

regularities currently doing. Then it conducts the next cycle.

At the first step, the program tries to find a new regularity as follows; it finds (or chooses)

two strings such that the two strings become the same if sub strings of each of the two

strings are replaced by a representative string of a set that includes the sub strings as

its members. For example, “Two apples and three apples equal five apples” and “Two

oranges and three oranges equal five oranges” become the same when “apples” and

“oranges” are replaced by “objects” respectively. “objects” is a representative of a set that

includes “apples” and “oranges. The program tries to find other strings that become the

same as the two strings if the sub strings are replaced by the representative string, and

then makes a new set. The new set includes the two strings and the other strings as its

members. For example, “Two apples and three apples equal five apples” and “Two

oranges and three oranges equal five oranges” become members of the new set. “Two

objects and three objects equal five objects” is a representative of the new set. The

representative is a new regularity.

To be more precise, a member of a set consists of strings gotten through more than one

channel, and the strings are bound together. Its representative is formed by the program,

and has no strings with quotations before it is bound to strings with quotations. For

example, “apples” apples, and “oranges” oranges, are strings gotten through the channels,

and become members of a set whose representative is “objects” objects. The string objects

is given at the time of initialization, and “objects” is later bound to the string objects.

This paper assumes that the program has already formed various sets, which are

explained later in the paper, and gets them at the time of initialization. Getting them,

the program forms new sets consisting of new input strings. Then the program constructs

a hierarchical set that includes sets already formed, which is also explained later.

1.2 Relations

The program gets / finds relations, <same> and <bind>. A relation <same> specifies

which sub string is the same as which sub string. Here the relation <same> is between

sub strings gotten through the same channel or representatives whose members are

gotten through the same channel. A relation <bind> specifies which sub string without

quotatins appear (or occur) together with which sub string with quotations. Figure 1

illustrates examples of the relation <same> between two sub strings and <bind> between

two sub strings.

1.3 Doing Strings

Suppose that the program gets an input string. For example, it gets “Two desks and three

desks equals “. Then it tries to retrieve a string that matches the input with replacing

input sub strings with their representatives. “Two objects and three objects equal five

objects” becomes the same when the program replaces “desks” in “Two desks and three

desks equals “ by “objects”. ［“objects” objects］ is a representative of a set consisting

of ［“apples” apples］, ［“oranges” oranges］, ［“desks” desks］ and others. Then the

program does the retrieved string after replacing representative strings by input sub

strings and keeping relations <same>; For example, it gets “Two desks and three desks

equals five desks“. Finding and keeping the relations is explained in Section 3.

When the input string with replacing input sub strings with their representatives does

not match any string kept in its memory, the program keeps the input in its memory.

The program tries to see if two strings match each other with replacing sub strings of

each by their representatives after it keeps many input strings in the memory.

This paper assumes that the program gets several sets and their representatives as its

initial setting, and Section 4 describes the sets. The most basic set is a set of all the sub

strings that are supposed to repeatedly appear in its inputs, and its representative string

is set to be ～ by the program.

 ✔ ✔ (a focus is placed at ✔)

 …4….. …4…..

 <same>

 ✔ ✔ (a focus is placed at ✔)

“4 and 4 are the same” …4… …4….

 <same>

 ✔ ✔

“This and that are the same” …o1… …o2…

 <same>

 <bind>

“here are 3 ○“ ○○○

Figure 1. Example relations <same> between two sub strings, and an example relation

<bind>. The program gets strings without quotations such as …4….. through channel 2

and 3, and gets ✔ through channel 3, and finds <same> between 4 and 4. The program

gets strings “here are 3 ○” and ○○○ at the same time, and then it binds them together.

1.4 Other Programs

Suppose that the program finds the following many times; strings through the second

channel and the third channel change at the same time, or changes through the third

channel occur first and then changes through the second channel occur. Then the

program binds a string “I do something.” to such changes of strings.

Suppose that the program gets strings many times in such a way that strings though the

second channel at one moment differ from those at the next moment, but strings through

the third channel keep the same. Then a string “another program does something.” is

bound to such changes of strings.

1.5 Hierarchical Regularities

The program forms hierarchical regularities in three ways; 1) It first forms a regularity

that holds in all the inputs, and then splits it into two regularities; a regularity holds in

inputs with sub strings Ss, and the other holds in inputs with sub strings other than Ss.

2) It firstly forms two regularities and then unites the two to form a regularity that

integrates the two. 3) It firstly forms a regularity, and finds there are cases where the

regularity does not hold. Then the program forms a regularity that the original one holds

in these cases and the original one does not hold in the other cases.

The following explains more of the case 3) of the above paragraph. The program forms a

regularity RL and then finds there are cases where the regularity RL does not hold. The

program stores the cases in its memory. Then the program tries to form a new regularity

RH describing when (or why) the regularity RL holds and when (or why) the regularity

RL does not hold. The new regularity RH is a hierarchical regularity that includes the

cases where RL holds and the cases where RL does not hold. The next step the program

takes is to form a way Wn either from cases RL holds to cases RL does not hold or from

cases RL does not hold to cases RL holds.

After the program forms several hierarchical regularities, it forms a set of hierarchical

regularities, and finds a representative of the set. A string with quotations bound to the

representative becomes “there are cases where a certain regularity holds and cases

where the regularity does not hold”.

Suppose that the program has formed a regularity Wn that the program, given a string

Sr, first does not do the string, then makes a way (or a string) to do the string Sr, and

does the string Sr. Now, the program has another program Pa do a string Sr, but it turns

out that the other program Pa does not do the string. Then the program tries to make a

string Sn bound to Wn. The program gives the string Sn to the other program Pa for the

puropose of Pa‘s doing the string Sn bound to Wn. As a result of doing Sn bound to Wn,

the program Pa forms a way (or a string) to do the string Sr, and does the string Sr.

Section 2.4 explains a regularity Wn mensioned in the above paragraph. Forming a

regularity Wn is the same as forming a new set and its representative whose member is

to make a way to do strings such as a string Sr.

1.6 Find and Bind Strings with Quotations to a Regularity

When the program forms a new regularity, it chooses strings through the second and the

third channel that match each orher with replacing sub strings by their representatives

already made. Each of the representatives already made consists of strings through the

second channel and the third channel and strings made by the program, but may not

bound to strings with quotations. The program does not create strings with quotations

to bind them to the new regularity. If the new regularity is a hierarchical one, strings to

specify a regularity is bound to the new regularity, but all the component regularities

may not be bound to strings with quotations.

The program tries to let another program Pa do Wn, and it tries to output strings with

quotations bound to Wn. But it finds that Wn is not fully bound to strings with quotations.

Then the program tries to fully bind strings with quotations to Wn.

For example, the program has a regularity, ［ …4… (next) …numb… ］without bound

to strings with quotations. The program retrieves strings (or regularities), ［ “Replace

A by B.” …A… (next) …B… ］, strings ［ “4” 4 ］, and links implementing 4 is a member

of a set with its representaive string ［ “numb” numb ］. Then it binds “Replace 4 by

numb.” to …4… (next) …numb… .

 …4… (next) …numb…

“Replace A by B” …A… (next) …B…

“Replace 4 by numb”. …4…. (next) …numb…..

Figure 2. An example of strings without a binding to a string with quotations and strings

with a binding to a string with quotations.

2. Input Strings that become bound to Capabilities of the Program

2.1 Forming Sets

The program gets a sequence of input strings from outside of the program through four

channels. The program gets a string a1, it tries to find the same string in a memory. If it

does not find the string in there, it stores the string a1 in the memory. (A series of strings

is cut at a space, a quotation, a comma, and a period.)

The program then gets a sequence of strings a2, and a3, and stores them in the memory.

It then makes a sequence of strings, Ag, that are common to strings a1, a2 and a3; it

applies a functionF on a1, a2, and a3, and gets Ag. F is a function composed of its original

function (a human writes) Fo and its acquired function Fe.

Next, the program gets a string, aif, and applies F to aif, to get a string, and finds the

string is the same as the former part of Ag, Agf. The program takes a string Agl, from the

memory, that follows Agf. It then applies the reverse of F to aif and Agl and gets ail. It

claims (or assumes) that ail follows aif.

Similarly, the program gets strings, b1, b2, and b3, and applies F to the strings to get a

string Bg. Then the program gets a string, bif and applies F to bif, to get a string, and

finds the string is the same as the former part of Bg, Bgf. The program takes a string Bgl,

from the memory, that follows Bgf. It then applies the reverse of F to bif and Bgl and gets

bil. It claims (or assumes) that bil follows bif. The same can be said when the program

gets c1, c2, and c3 and applies F to the strings to get a string Cg.

The program forms a set that includes strings, a1, a2, a3, and others, as its members,

which become Ag when F is applied to them by the program. The program sets Ag to be

the representative of the set. Similarly, the program forms a set consisting of b1, b2, b3

and others, which become Bg when the program applies F to them, and forms a set

consisting of c1, c2, c3 and others, which become Cg when the program applies F to them.

The program finds common strings Sc among pairs of (a1, a2, a3, , : Ag), (b1, b2, b3, , : Bg),

(c1, c2, c3, , : Cg), and other pairs of input strings and their representative strings. The

common strings Sc among the pairs describe approximately the function F of the program,

and the function are composed of those a human write, Fo, and those the program has

acquired, Fe. The more pairs the program forms, the more precisely the strings common

to the pairs Sc describe the function F.

When the number of pairs such as (a1, a2, a3, , ,: Ag), (b1, b2, b3, , ,: Bg), (c1, c2, c3, , , : Cg)

increase, the common part of the pairs becomes Fo since Fe is acquired functions and the

common part of Fe becomes the common part of all the acquired functions, namely

assumptions about all the functions the program has from the beginning (namely, any

function should be such and such).

Suppose a case occurs where the program tries to have the program Pa make d1l, after

giving d1f, d2f, and d2l to Pa, and suppose the program Pa happens to have not formed yet

strings Sc common in pairs (a1, a2, a3, , ,: Ag), (b1, b2, b3, , ,: Bg), (c1, c2, c3, , , : Cg), and other

pairs and thus the program Pa is not able to make d1l. Then the program binds strings

SI gotten from outside and strings Sc common in pairs (a1, a2, a3, , ,: Ag), (b1, b2, b3, , ,: Bg),

(c1, c2, c3, , , : Cg), and other pairs together for the purpose of having another program Pa

make d1l. The program gives Pa the strings SI, so that Pa is able to make d1l. The program

Pa receives the strings SI as its inputs, retrieves strings SF, not integrated as strings Sc,

bound to parts of function F, and makes SF become true; program Pa, given d2fd2l and d1f,

makes a pair (d2fd2l, d1fd1l: Dg) since the pair made becomes consistent to strings SF.

Given SI, d2fd2l and d1f, to make the pair (d2fd2l, d1fd1l: Dg), namely to make the pair

consistent to SF, (strings SF matche SI) is the same as to apply function F to string d1 to

get Dg and apply the reverse of F to d2 and d1f to get d1l. Thus the program describes its

own function F in strings SI gotten from outside.

Section 2.3 explains why and how the program binds strings Sc made by function F, and

strings SI from outside together.

2.2 Inputs, Outputs, Regularities and Consistency

The program tries to achieve consistency between input strings and regularities already

formed. When it gets new inputs si, the program retrieves strings sr the former part of

which match the inputs si with replacing sub strings by their representatives. The

retrived strings, as a whole, are a regularity r, and the input strings si turn out to be an

example of the regularity r. It outputs strings so if the retrieved strings sr and the input

strings si make the outputs so, in other words, the latter part of the retrieved strings sr

with replacing representatives by input sub strings include the output strings so.

 “count how many ○“ ｛ ○○○○○○ ｝ ｛ I A ｝

 “6“ ｛ ○○○○○○ ｝ ｛ A ｝

Figure 3. An example of consistency. Our program gives strings “count how may

○“｛ ○○○○○○ ｝to program A, and gets “6” output by A. While the program gets “6”

made by A, the program conducts strings followed by “count how many ○“, and gets “6”.

Strings made by A match strings made by our program.

If the retrieved strings sr and the output strings so further match strings sc of a regularity

with replacing sub strings by their representatives, the program retrieves the strings sc

and tries to achieve consistency among the strings sr previously retriecved, the outputs

so and the strings sc retrieved now.

The program gets input strings si, retrieves strings sr the former part of which match the

inputs si with replacing sub strings by their representatives. Strings sr is a

representative of a set S whose member is the strings si. The program makes strings so

as the retrieved strings sr and the input si specify, and outputs the strings so. When the

program has another program do the same as just described, namely, has the other

program get si and output so, it outputs strings to have the other begin to get the strings

Do strings to count objects such as ○,

and gets “6” as the result of doing the strings.

<same>

si. After the output, the program gets input strings soa made by the other, and sees if soa

is the same as so. If they are the same, the program does nothing. Otherwise, namely

inconsistency occurs, the program keeps the occurrances of the inconsistency. The

program further has another program get the strings si as well as strings that are

members of the set S and tries to form a regularity that includes cases where the program

and the other do the same with the strings of S and cases where they do not do the same.

2.3 Forming Hierarchical Regularities

The program forms a regularity RL and then finds there are cases where the regularity

RL does not hold. The program stores the cases in its memory. The program tries to form

a new regularity RH describing when the regularity RL holds and when the regularity RL

does not hold. After that, the program tries to find a way from cases where RL does not

hold to cases RL holds when the program has had cases where RL does not hold and has

a string to have the program do RL. Or the program tries to find a way from cases where

RL holds to cases where RL does not hold when the program has had cases where RL holds

and has a string to have the program do RL does not hold. If it finds the way, the program

tries to bind a new string with quotations to the way found.

Strings to specify that Given Strings are not in Any Set Already Created

The program gets a string v and applies F to it (the string turns out to be the former part

vf of the input string v). 1) If the application result is the former part of either Ag, Bg, Cg,

or one of other representatives, v becomes a member of one of the sets whose

representative is either Ag, Bg, Cg, or one of the others. Then the program applies the

reverse of F to one of Agl, Bgl, Cgl, and the others, and the former part vf of v, and gets vl.

2) If the application result is not any of the former part of Ag, Bg, Cg, or other

representatives, but the application result happens to be the same as the result of

applying F to wf, then the program applys T to w and gets Vg, and applys the reverse of

F to vf and Vg to get vl. (Strings v and w become members of a new set although the new

set is not formed yet.) 3) Its result is not the same as the result of applying F to any w.

There is no way to get vl.

The program finds three cases described in the previous paragraph occur several times.

Then for the case of 1) the program binds a string with quotations “Ag is a way to do “a1,

a2, a3, or the others“ “ to the string Ag. Similarly it binds a string “Bg is a way to do “b1,

b2, b3, or the others“ “ to the string Bg. 2) The program binds a string with quotations

“there is a way to do v” to a sequence of strings; the program applies F to v and wf to find

the results are the same. The program applies T to w and gets Vg, and that the program

applys the reverse of F to vf (here, vf is v) and Vg to get vl. 3) The program binds a string

with quotations “there is no way to do v” to the sequence of strings that the program

finds no string that is the same as a result string of appliying F to v.

2.4 Strings to have Another Program make a New Set

The program has formed a regularity that there is a way to do a string that matches an

input string after the application of F to the input string. The program has also found

cases where the regularity does not hold; namely, there is not a way to do a string that

matches an input string after the application of F to the input string. Then the program

tries to find a way to go from cases where the regularity does not hold to cases where the

regularity holds; namely, the program tries to form a way of making (or generating) a

way to do the string, and to form a new set consisting of the input string and its

representative.

The way Wn starts with the following: Given v, apply F to v and find v is not a member

of any set already formed. Then the way is to choose w, apply F to wf and to find the

application result is the same as the result of applying F to v. The program sets v and w

be members of a new set, and make the result of the application F to w be a

representative Vg of the new set. Vg is now a way to do v.

When the program has another program Pa do v and the program Pa fails to do so, the

program does the following; it binds strings with quotations to the way Wn so that the

program gives the strings with quotations to program Pa, and has the other program Pa

do the way Wn. Doing the way Wn, the program Pa chooses w so that the application F to

wf is the same as that to v. It applies T to w to get Vg, and applies the reverse of F to vf

(here, vf is v) and Vg to get vl. Getting vl is to do v (v is actually vf). Then the program Pa

forms a new set consisiting of v and w.

As explained in the above paragraph, strings bound to the way Wn are the strings to have

another program, given v and w, make a new set (or make its representative) consisting

of v and w.

3. Strings to have another make a way of forming a Regularity

Assume the program has formed regularities described in Section 4, then the program

will have another program make a way of forming a regularity. To do so, the program

binds strings with quotations to steps of making the way. The strings describe what the

program does to make rhe way, namely the strings describe its original capabilities. This

section explains how the program does just described.

3.1 Strings that the program has from the beginning

The program has three types of strings from the beginning; the first type consists of

representatives of sets, representatives of all the strings, temporal changes of all the

strings. The second type consists of strings describing activities on strings such as input,

output, focusing, partitions (or punctuations), temporal sequencing of strings, relations

such as <bind>, <same>, <this is this>. The third type consists of strings describing

through which channel the program gets and puts strings.

Strings “”｛｝｛｝ show through which channel the program gets input stings.

“” first channel

｛｝ second / third channel

｛｝ forth channel

｛ I ｝ The program gets changes through channel 3 at the same time it gets changes

through channel 2, or after it gets changes through channel 2.

｛ another program ｝ The program gets changes through channel 1 and/or 3 whithout

changes through channel 2.

｛continue / stop｝ get strings through channel 4 to specify continuing a current doing

or stopping the current doing.

✔ shows on which sub string through channel 2 a focus is placed through channel 3.

output strings using its motors through channel 3.

get strings through channel 1 and / or channel 2.

A string ⇔ describes that strings following ⇔ are those retrieved from a memory that

matche current strings.

Time sequence

A（next）B A occurs first and then B occurs (gets string A first and gets string B).

Strings to show two strings are the same, one before next and the other after next.

（ this is this ）

<bind> describes strings are bound together.

<same> describes two strings are the same. (Namely, the two are the same member of a

set.)

A representative and its members are linked by pointers:

（→） a pointer to a representative

（↓） a pointer to the next member.

（←） a representative of its members.

A pair of strings 《 》 describe a work space to keep input strings, retrieved strings,

strings describing relations among strings, and output strings.

A head of a link has a representative of its members, and the link keeps its members.

Strings of the following type ｛ （←）（ ） ・ ｝ describe a link head, and ・ is a

representative of its members, and also the representative of a set consisting of the

members. ・ is a string the program has from the beginning.

A member is linked by （→）（ ） as in the below, and → points to its head. Since the

member may become a head of other members, it has multiple links.

 ｛ （←）（ ）（→）（ ） ・ ｝

Example strings that will be formed are described in the below:

“Find the number”. ｛ （→1）（ ）（←2）（ ） ・ ｝ （next）

 “ “ ｛ （→1）（ ）（←2）（ ）（→3）（ ） ・ ｝

A pointer →1 points to the most general string, →3 points to the number, namely strings

before （next）, and describes strings after （next） are a member of the strings before

（next）. ←2 points to members that are common to ・.

“Add 15 to 8 makes “

｛（→）（ ）（←）（ ）（→）（ ） 15 （→）（ ）（←）（ ）（→）（ ）8｝（next）

“23” ｛ （→）（ ）（←）（ ）（→）（ ）23｝

Strings to describe replacing an input specific number by a representative of all the

specific numbers.

“Replace “ “ by a number”. （→）（ ）（←）（ ）（→）（ ） ・ ”・” （next）

 （→）（ ）（←）（ ） ・ ”number” .

If the same strings repeat, then the program replaces them by strings , , , . Namely, “～”

“～” “～” are replaced by , , , .

3.2 Making methods of solving math problems

-- Forming regularities of solving math problems

This section describes cases where the program forms regularities of solving

mathematical problems, and two types of general regularities. While forming the

regularities of solving problems, the program forms the two; One type consists of strings

common in various problems, and the common goal state of seriese of strings is ｛specific

link ・｝ (（→）（ ）（←）（ ）（→）（ ） ・ is abbreviated by specific link ・), describing

the common goal state is a specific number of a set. This regularity is described in the

below. The other consists of pairs of strings common in inputs and in regularities, and is

described in the next section.

［

“There ～ number.” ｛representative ・｝

, , ,

“Find ～ number.” ｛representative ・｝（next）｛specific link ・｝

, , ,

“～ number is “ “ .“ ｛specific link ・｝

］

Strings, representative ・, in the above abbreviates （→）（ ）（←）（ ） ・.

Figure 4. A regularity of various mathematical problems.

When the program gets three or more serieses of inputs, each of which, the program finds,

is an example of a mathematical problem, as shown in 《 》 below, it forms a regularity

of solving the mathematical problem. To find if two serieses of inputs are examples of a

math problem, the program replaces sub strings in the inputs by their representatives

and sees if the strings with the replacements are the same. While the program forms

various mathematical problems, it forms a general regularity described as in Figure 4.

《 ｛ T I ｝

“There is one number. Multiply it by 3. Add 5 to the multiplication result is 38. Find

the number.”

⇔［｛～｝ ”there is ～”］ ⇔［ ｛ ・ ｝ ”there is one number”］

⇔［｛～｝”one ～”］ ⇔［ ｛ ・ ｝ ”one number”］

⇔［｛ ・ ‥ ｝”multiply “ “ by “ “ ”（next） ｛・ ‥ …｝”is “ “ “ ］

⇔［｛ ・ ‥ ｝"Add “ “ to “ “ ” （next） ｛ ・ ‥ … ｝”is “ “ ” ］

⇔［｛3｝ “3”］ ⇔［｛5｝ “5”］ ⇔［｛38｝ “38”］

⇔［”find the nunber” , , ,（next）｛ ・ ｝］

｛ ・ ｝

｛ ・ 3 ｝（next）｛・ 3 …｝

｛ 5 ‥ ｝（next）｛ 5 ‥ 38 ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract 5 from 38. Its result is 33. Divide 33 by 3. The result is 11. The number is 11”.

⇔［｛ ・ ‥ ｝”subtract “ “ from “ “ “ （next）｛・ ‥ …｝”is “ “ ” ］

⇔［“Its result is “ “ “ ｛ ・ ｝ ］

⇔［｛ ・ ･･ ｝”divide “ “ by “ “ “ （next）｛・｝”is “ “ “ ］

⇔［“The result is “ ““ ｛・｝ ］

⇔［“The number is “ “ “ ｛・｝ ］

⇔［｛5｝”5”］ ⇔［｛38｝”38”］ ⇔［｛33｝”33”］

⇔［｛3｝”3”］ ⇔［｛11｝”11”］

｛ 5 38 ｝（next）｛ 5 38 33 ｝

｛ 33 ｝

< bind >

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< bind >

< this is this >

< same >

< same >

< same >

｛ 33 3 ｝（next）｛ 33 3 11 ｝

｛ 11 ｝

“see ”the number is 11” is the answer to the problem”.

⇔［ ”see ～ ” ｛ ～ ～～｝｛ ｝ （next） ｛ ～ ｝ ］

⇔［”the number is “ “ ” ｛ ・ ｝］

⇔［｛11｝”11”］

⇔［"the problem” ｛ , , , Find the number. , , , ｝ ］

｛11｝

｛There is one number.｝｛ ・ ｝

｛Multiply it by 3.｝｛・ 3 ｝（next）｛・ 3 …｝

｛Add 5 to the multiplication result is 38.｝｛5 ‥ ｝（next）｛5 ‥ 38 ｝

｛Find the number.｝ , , ,（next）｛ ・ ｝

 ｛There is 11.｝｛ 11 ｝

⇔［"There is “ “.” ｛ ・ ｝ ］

｛There is one number.｝｛ ・ ｝

｛ Multiply it by 3.｝

｛・ 3 ｝（next）｛・ 3 …｝

｛Add 5 to the multiplication result is 38.｝｛5 ‥ ｝（next）｛5 ‥ 38 ｝

｛Find the number.｝ , , , （next）｛ ・ ｝

｛There is 11.｝｛ 11 ｝

｛ Multiply 11 by 3. ｝

｛11 3 ｝（next）｛11 3 33｝

⇔［”multiply by “ ｛・‥｝（next）｛・ ‥ … ｝］

“multiply 11 by 3 ”

｛ Multiply it by 3.｝

｛Add 5 to the multiplication result is 38｝｛5 ‥ ｝（next）｛5 ‥ 38 ｝

｛Find the number ｝ , , ,（next）｛ ・ ｝

< bind >

< this is this > < this is this >

< bind >

< bind >

< this is this >

< bind >

< this is this >

｛There is 11.｝｛ 11 ｝

｛Multiply 11 by 3. ｝｛11 3 ｝（next）｛11 3 33｝

 ｛Add 5 to 33 is 38.｝

｛5 33 ｝（next）｛5 33 38 ｝

⇔［”Add “ “ to “ “ is “ “.” ｛・ ‥ ｝（next）｛・ ‥ …｝］

“Add 5 to 33 is 38”

｛Add 5 to the multiplication result is 38｝

｛Find the number｝ , , ,（next）｛ ・ ｝

｛There is 11.｝｛ 11 ｝

｛ Multiply 11 by 3. ｝｛11 3 ｝（next）｛11 3 33｝

｛Add 5 to 33 is 38.｝｛5 33 ｝（next）｛5 33 38 ｝

 ｛Find 11.｝

｛Find the number｝ , , ,（next）｛ 11 ｝

⇔［"Find “ “ “ ｛ ・ ｝（next）｛ ・ ｝］

“Find 11.”

“ “the number is 11” is the answer to the problem.”

 // In the above, some relations <same>, <bind>, <this is this> are omitted.

》

The program gets input strings, and tries to retrieve strings of regularities already

formed that match the input with replacing sub strings by their representative strings.

It tries to place (write in its work) strings in such a way that the retrieved strings become

parallel to the inputs and the strings placed. In the above, strings ｛・｝ are placed which

are bound to strings “there is one number.”, and are parallel to the strings retrieved.

《 ｛ T I ｝

“There is one number. Multiply it by 4. Add 7 to the multiplication result is 43. Find

the number.”

⇔［｛～｝ ”there is ～”］ ⇔［ ｛ ・ ｝ ”there is one number”］

⇔［ ｛ ・ ｝ ”one number”］

⇔［｛ ・ ‥ ｝”multiply “ “ by “ “ ”（next） ｛・ ‥ …｝”is “ “ “ ］

⇔［｛ ・ ‥ ｝"Add “ “ to “ “ ” （next） ｛ ・ ‥ … ｝”is “ “ ” ］

<same>

This is this

<same>

⇔［｛4｝ “4”］ ⇔［｛7｝ “7”］ ⇔［｛43｝ “43”］

⇔［”find the nunber” , , ,（next）｛ ・ ｝］［｛ ・ ｝”the number”］

｛ ・ ｝

｛ ・ 4 ｝（next）｛・ 4 …｝

｛ 7 ‥ ｝（next）｛ 7 ‥ 43 ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract 7 from 43. Its result is 36. Divide 36 by 4. The result is 9. The number is 9”.

⇔［｛ ・ ‥ ｝”subtract “ “ from “ “ “ （next）｛・ ‥ …｝”is “ “ ” ］

⇔［“Its result is “ “ “ ｛ ・ ｝ ］

⇔［｛ ・ ･･ ｝”divide “ “ by “ “ “ （next）｛・｝”is “ “ “ ］

⇔［“The result is “ ““ ｛・｝ ］

⇔［“The number is “ “ “ ｛・｝ ］

⇔［｛7｝”7”］ ⇔［｛43｝”43”］ ⇔［｛36｝”36”］

⇔［｛4｝”4”］ ⇔［｛9｝”9”］

｛ 7 43 ｝（next）｛ 7 43 36 ｝

｛ 36 ｝

｛ 36 4 ｝（next）｛ 36 4 9 ｝

｛ 9 ｝

“see ”the number is 9” is the answer to the problem”.

< bind >

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< bind >

< this is this > < this is this >

< bind >

< bind >

< this is this >

< same >

< same >

< same >

< this is this >

⇔［ ”see ～ ” ｛ ～ ～～｝｛ ｝ （next） ｛ ～ ｝ ］

⇔［”the number is “ “ ” ｛ ・ ｝］

⇔［｛9｝”9”］

⇔［"the problem” ｛ , , , Find the number. , , , ｝ ］

｛9｝

｛There is one number.｝｛ ・ ｝

｛Multiply it by 4.｝｛・ 4 ｝（next）｛・ 4 …｝

｛Add 5 to the multiplication result is 38.｝｛7 ‥ ｝（next）｛7 ‥ 43 ｝

｛Find the number.｝ , , ,（next）｛ ・ ｝

 ｛There is 9.｝｛ 9 ｝

⇔［"There is “ “.” ｛ ・ ｝ ］

｛There is one number.｝｛ ・ ｝

｛ Multiply it by 4.｝

｛・ 4 ｝（next）｛・ 4 …｝

｛Add 5 to the multiplication result is 38.｝｛7 ‥ ｝（next）｛7 ‥ 43 ｝

｛Find the number.｝ , , , （next）｛ 9 ｝

｛There is 9.｝｛ 9 ｝

｛ Multiply 9 by 4. ｝

｛9 4 ｝（next）｛9 4 36｝

⇔［”multiply by “ ｛・‥｝（next）｛・ ‥ … ｝］

“multiply 9 by 4 ”

｛ Multiply it by 4.｝

｛Add 7 to the multiplication result is 43｝｛7 ‥ ｝（next）｛7 ‥ 43 ｝

｛Find the number ｝ , , ,（next）｛ 9 ｝

｛There is 9.｝｛ 9 ｝

｛Multiply 9 by 4. ｝｛9 4 ｝（next）｛9 4 36｝

 ｛Add 7 to 36 is 43.｝

｛7 36 ｝（next）｛7 36 43 ｝

⇔［”Add “ “ to “ “ is “ “.” ｛・ ‥ ｝（next）｛・ ‥ …｝］

“Add 7 to 36 is 43”

｛Add 7 to the multiplication result is 43｝

｛Find the number｝ , , ,（next）｛ 9 ｝

< bind >

< bind >

｛There is 9.｝｛ 9 ｝

｛ Multiply 9 by 4. ｝｛9 4 ｝（next）｛9 4 36｝

｛Add 7 to 36 is 43.｝｛7 36 ｝（next）｛7 36 43 ｝

 ｛Find 9.｝

｛Find the number｝ , , ,（next）｛ 9 ｝

⇔［"Find “ “ “ ｛ ・ ｝（next）｛ ・ ｝］

“Find 9.”

“ “the number is 9” is the answer to the problem.”

》

The program finds relations <same> among inputs that are replaced by their

representatives and <bind> to specify that strings through different channels are bound

together. The program gets as inputs the facts that strings at one time t1 are the same

as those at the time following t1 and adds <this is this> to point to the strings at t1 and

those at t2.

《 ｛ T I ｝

“There is one number. Multiply it by 6. Add 2 to the multiplication result is 80. Find

the number.”

⇔［｛～｝ ”there is ～”］ ⇔［ ｛ ・ ｝ ”there is one number”］

⇔［ ｛ ・ ｝ ”one number”］

⇔［｛ ・ ‥ ｝”multiply “ “ by “ “ ”（next） ｛・ ‥ …｝”is “ “ “ ］

⇔［｛ ・ ‥ ｝"Add “ “ to “ “ ” （next） ｛ ・ ‥ … ｝”is “ “ ” ］

⇔［｛6｝ “6”］ ⇔［｛2｝ “2”］ ⇔［｛80｝ “80”］

⇔［”find the nunber” , , ,（next）｛ ・ ｝］［｛ ・ ｝”the number”］

｛ ・ ｝

｛ ・ 6 ｝（next）｛ ・ 6 …｝

｛ 2 ‥ ｝（next）｛ 2 ‥ 80 ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract 2 from 80. Its result is 78. Divide 78 by 6. The result is 13. The number is 13”.

⇔［｛ ・ ‥ ｝”subtract “ “ from “ “ “ （next）｛・ ‥ …｝”is “ “ ” ］

⇔［“Its result is “ “ “ ｛ ・ ｝ ］

⇔［｛ ・ ･･ ｝”divide “ “ by “ “ “ （next）｛・｝”is “ “ “ ］

⇔［“The result is “ ““ ｛・｝ ］

⇔［“The number is “ “ “ ｛・｝ ］

⇔［｛2｝”2”］ ⇔［｛80｝”80”］ ⇔［｛78｝”78”］

⇔［｛6｝”6”］ ⇔［｛13｝”13”］

｛ 2 80 ｝（next）｛ 2 80 78 ｝

｛ 78 ｝

< bind >

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< bind >

< same >

< same >

< same >

｛ 78 6 ｝（next）｛ 78 6 13 ｝

｛ 13 ｝

“see ”the number is 13” is the answer to the problem”.

⇔［ ”see ～ ” ｛ ～ ～～｝｛ ｝ （next） ｛ ～ ｝ ］

⇔［”the number is “ “ ” ｛ ・ ｝］

⇔［｛13｝”13”］

｛13｝

｛There is one number.｝｛ ・ ｝

｛Multiply it by 6.｝｛・ 6 ｝（next）｛・ 6 …｝

｛Add 2 to the multiplication result is 80.｝｛2 ‥ ｝（next）｛2 ‥ 80 ｝

｛Find the number.｝ , , ,（next）｛ ・ ｝

 ｛There is 13.｝｛ 13 ｝

⇔［"There is “ “.” ｛ ・ ｝ ］

｛There is one number.｝｛ ・ ｝

｛ Multiply it by 6.｝

｛・ 6 ｝（next）｛・ 6 …｝

｛Add 2 to the multiplication result is 80.｝｛2 ‥ ｝（next）｛2 ‥ 80 ｝

｛Find the number.｝ , , , （next）｛ 13 ｝

｛There is 13.｝｛ 13 ｝

｛ Multiply 13 by 6. ｝

｛13 6 ｝（next）｛13 6 78｝

⇔［”multiply by “ ｛・‥｝（next）｛・ ‥ … ｝］

“multiply 13 by 6 ”

｛ Multiply it by 6.｝

｛Add 2 to the multiplication result is 80｝｛2 ‥ ｝（next）｛2 ‥ 80 ｝

｛Find the number ｝ , , ,（next）｛ 13 ｝

< this is this > < this is this >

< bind >

< bind >

< this is this >

< bind >

< this is this >

< bind >

｛There is 13.｝｛ 13 ｝

｛Multiply 13 by 6. ｝｛13 6 ｝（next）｛13 6 78｝

 ｛Add 2 to 78 is 80.｝

｛2 78 ｝（next）｛2 78 80 ｝

⇔［”Add “ “ to “ “ is “ “.” ｛・ ‥ ｝（next）｛・ ‥ …｝］

“Add 2 to 78 is 80”

｛Add 2 to the multiplication result is 80｝

｛Find the number｝ , , ,（next）｛ 13 ｝

｛There is 13.｝｛ 13 ｝

｛ Multiply 13 by 6. ｝｛13 6 ｝（next）｛13 6 78｝

｛Add 2 to 78 is 80.｝｛2 78 ｝（next）｛2 78 80 ｝

 ｛Find 13.｝

｛Find the number｝ , , ,（next）｛ 13 ｝

⇔［"Find “ “ “ ｛ ・ ｝（next）｛ ・ ｝］

“Find 13.”

“ “the number is 13” is the answer to the problem.”

》

The program, given examples, forms a regularity, namely a problem and a way to solve

it out of the examples. The below shows the regularity just formed.

（←）（ ）（→）（ ）

［ ｛ I ｝

“There is one number. Multiply it by “ “. Add “ “ to the multiplication result is “ “. Find

the number.”

⇔［｛～｝ ”there is ～”］ ⇔［ ｛ ・ ｝ ”there is one number”］

⇔［ ｛ ・ ｝ ”one number”］

⇔［｛ ・ ‥ ｝”multiply “ “ by “ “ ”（next） ｛・ ‥ …｝”is “ “ “ ］

⇔［｛ ・ ‥ ｝"Add “ “ to “ “ ” （next） ｛ ・ ‥ … ｝”is “ “ ” ］

⇔［｛・｝ “ ”］ ⇔［｛・｝ “ ”］ ⇔［｛・｝ “ ”］

⇔［”find the nunber” , , ,（next）｛ ・ ｝］［｛ ・ ｝”the number”］

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ …｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract “ “ from “ “. Its result is “ “. Divide “ “ by “ “. The result is “ “. The number is

“ “ ”.

⇔［｛ ・ ‥ ｝”subtract “ “ from “ “ “ （next）｛・ ‥ …｝”is “ “ ” ］

⇔［“Its result is “ “ “ ｛ ・ ｝ ］

⇔［｛ ・ ･･ ｝”divide “ “ by “ “ “ （next）｛・｝”is “ “ “ ］

⇔［“The result is “ ““ ｛・｝ ］

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< same >

< same >

< same >

⇔［“The number is “ “ “ ｛・｝ ］

⇔［｛・｝” ”］ ⇔［｛・｝” ”］ ⇔［｛・｝” ”］

⇔［｛・｝” ”］ ⇔［｛・｝” ”］

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

“see ”the number is “ “ “ is the answer to the problem”.

⇔［ ”see ～ ” ｛ ～ ～～｝｛ ｝ （next） ｛ ～ ｝ ］

⇔［”the number is “ “ ” ｛ ・ ｝］

⇔［｛・｝” ”］

｛・｝

｛There is one number.｝｛ ・ ｝

｛Multiply it by ‥.｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to the multiplication result is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number.｝ , , ,（next）｛ ・ ｝

 ｛There is ・.｝｛ ・ ｝

⇔［"There is “ “.” ｛ ・ ｝ ］

｛There is one number.｝｛ ・ ｝

｛ Multiply it by ‥.｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to the multiplication result is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number.｝ , , , （next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛ Multiply ・ by ‥. ｝

｛・ ‥ ｝（next）｛・ ‥ …｝

< bind >

< bind >

< this is this > < this is this >

< bind >

< bind >

< this is this >

< bind >

< this is this >

< bind >

< this is this >

< this is this >

< this is this >

⇔［”multiply by “ ｛・‥｝（next）｛・ ‥ … ｝］

“multiply “ “ by “ “ ”

｛ Multiply it by ‥.｝

｛Add ・ to the multiplication result is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number ｝ , , ,（next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛Multiply ・ by ‥. ｝｛・ ‥ ｝（next）｛・ ‥ …｝

 ｛Add ・ to ‥ is ….｝

｛・ ‥ ｝（next）｛・ ‥ … ｝

⇔［”Add “ “ to “ “ is “ “.” ｛・ ‥ ｝（next）｛・ ‥ …｝］

“Add “ “ to “ “ is “ “ ”

｛Add ・ to the multiplication result is …｝

｛Find the number｝ , , ,（next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛ Multiply ・ by ‥. ｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to ‥ is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

 ｛Find ・.｝

｛Find the number｝ , , ,（next）｛ ・ ｝

⇔［"Find “ “ “ ｛ ・ ｝（next）｛ ・ ｝］

“Find “ “.”

“ “the number is “ “ ” is the answer to the problem.”

］

It applies the regularity just formed when it gets strings describing a new problem. Then

it simplifies the regularity as in the following.

（←）（ ）（→）（ ）

［ ｛ I ｝

“There is one number. Multiply it by “ “. Add “ “ to the multiplication result is “ “. Find

the number.”

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ …｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract “ “ from “ “. Its result is “ “. Divide “ “ by “ “. The result is “ “. The number is

“ “ ”.

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

“see ”the number is “ “ “ is the answer to the problem”.

｛・｝

｛There is one number.｝｛ ・ ｝

｛Multiply it by 6.｝｛・ ‥ ｝（next）｛・ ‥ …｝

< this is this >

< bind >

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< bind >

< this is this > < this is this >

< bind >

< bind >

< this is this >

< same >

< same >

< same >

< bind >

< bind >

｛Add ・ to the multiplication result is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number.｝ , , ,（next）｛ ・ ｝

 ｛There is ・｝｛ ・ ｝

｛There is one number.｝｛ ・ ｝

｛ Multiply it by ‥.｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to the multiplication result is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number.｝ , , , （next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛ Multiply ・ by ‥. ｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛ Multiply it by ・.｝

｛Add ・ to the multiplication result is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number ｝ , , ,（next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛Multiply ・ by ‥. ｝｛・ ‥ ｝（next）｛・ ‥ …｝

 ｛Add ・ to ‥ is ….｝

｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to the multiplication result is …｝

｛Find the number｝ , , ,（next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛ Multiply ・ by ‥. ｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to ‥ is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

 ｛Find ・.｝

｛Find the number｝ , , ,（next）｛ ・ ｝

“ “the number is “ “ ” is the answer to the problem.”

］

<same>

,same>

<same>

,same>

The program, given a new input, retrieves a regularity that matches the input, and

applies the regularity. It replaces representative strings in the retrieved by example

strings in the input, and makes strings so that relations <same>, <bind> and <this is

this> hold among the strings retrieved with replacements and the strings just made.

《 ｛ T I ｝

 “There is one number. Multiply it by 4. Add 11 to the multiplication result is 91. Find

the number”

 // gets input strings (an example of a math problem).

⇔ ［ ｛ I ｝

“There is one number. Multiply it by “ “. Add “ “ to the multiplication result is “ “. Find

the number.”

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ …｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract “ “ from “ “. Its result is “ “. Divide “ “ by “ “. The result is “ “. The number is

“ “ ”.

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

< bind >

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< bind >

< this is this > < this is this >

< bind >

< bind >

< this is this >

< same >

< same >

< same >

“see ”the number is “ “ ” is the answer to the problem”.

｛・｝

｛There is one number.｝｛ ・ ｝

｛Multiply it by 6.｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to the multiplication result is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number.｝ , , ,（next）｛ ・ ｝

 ｛There is ・｝｛ ・ ｝

｛There is one number.｝｛ ・ ｝

｛ Multiply it by ‥.｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to the multiplication result is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number.｝ , , , （next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛ Multiply ・ by ‥. ｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛ Multiply it by ・.｝

｛Add ・ to the multiplication result is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number ｝ , , ,（next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛Multiply ・ by ‥. ｝｛・ ‥ ｝（next）｛・ ‥ …｝

 ｛Add ・ to ‥ is ….｝

｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to the multiplication result is …｝

｛Find the number｝ , , ,（next）｛ ・ ｝

｛There is ・.｝｛ ・ ｝

｛ Multiply ・ by ‥. ｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛Add ・ to ‥ is ….｝｛・ ‥ ｝（next）｛・ ‥ … ｝

< this is this >

< bind >

< bind >

<same>

,same>

<same>

,same>

 ｛Find ・.｝

｛Find the number｝ , , ,（next）｛ ・ ｝

“ “the number is “ “ ” is the answer to the problem.”

］

 // retrieve regularities that match the inputs.

 // make strings so that relations <same> <bind> and <this is this>

// hold among the inputs, the strings made, and the retrieved.

｛・｝

｛・ 4 ｝（next）｛ ・ 4 …｝

｛11 ‥ ｝（next）｛11 ‥ 91｝

“Subtract 11 from 91. Its result is 80. Divide 80 by 4. The result is 20. The number is 20.”

｛11 91 ｝（next）｛ 11 91 80｝

｛80｝

｛80 4 ｝（next）｛80 4 20｝

｛20｝

“see ”the number is 20” is the answer to the problem”

｛20｝

｛20｝

｛20 4 ｝（next）｛20 4 80｝

｛11 80 ｝（next）｛11 80 91｝

｛ ・ ｝（next）｛20｝

》

The program forms regularities each of which solves each math problem. Example

regularities are described in the below.

［（←）（ ）（→）（ ） ｛ I ｝

“There is one number. Divide it by “ “. Add “ “ to the quotient is “ “. Find the number.”

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ …｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ （ ） ・ ｝ , , , （next） ｛ （ ） ・ ｝

“Subtract “ “ from “ “. Its result is “ “. Divide “ “ by “ “. The result is “ “. The number is

“ “ ”.

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ｝

“see ”the number is “ “ ” is the answer to the problem”.

｛・｝

｛There is one number.｝｛・｝

｛Divide it by ‥｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to the quotient is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number｝｛・｝（next）｛・｝

< this is this >

< bind >

< bind >

< bind >

< bind >

< bind >

< this is this > < this is this >

< bind >

< this is this > < this is this >

< bind >

< bind >

< this is this >

< same >

< same >

< same >

< bind >

< bind >

｛There is ・.｝｛・｝

｛There is one number.｝｛・｝

｛Divide it by ‥｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to the quotient is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number｝｛・｝（next）｛・｝

｛There is ・.｝｛・｝

｛Divide ・ by ‥｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Divide it by ‥｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to the quotient is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number｝｛・｝（next）｛・｝

｛There is ・.｝｛・｝

｛Divide ・ by ‥｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to ‥ is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to the quotient is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find the number｝｛・｝（next）｛・｝

｛There is ・.｝｛・｝

｛Divide ・ by ‥｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Add ・ to ‥ is …｝｛・ ‥ ｝（next）｛・ ‥ … ｝

｛Find ・｝｛・｝（next）｛・｝

｛Find the number｝｛・｝（next）｛・｝

“ “the number is “ “ “ is the answer to the problem.”

］

< bind >

The program forms regularities, each one solves one mathematics problem (makes

representatives be specific numbers) as described in the following.

［

“There are two numbers. One number plus the other is “ “. The one number minus the

other is “ “. Find the two numbers.”

｛・ ‥ ｝

｛・ ‥ ｝（next）｛・ ‥ … ｝

｛・ ‥ ｝（next）｛・ ‥ … ｝

｛・ ‥ ｝（next）｛・ ‥ ｝

“ “ “ minus “ “ is “ “ “.

“Divide “ “ by 2 is “ “ “.

“ “ “ plus “ “ is “ “ “.

“The one is “ “ “.

“The other is “ “ “.

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ 2 ｝（next）｛・ 2 …｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ｝

｛・ ‥｝

“see “the one is “ “. The other is “ “ ” is the answer to the problem”

｛there are two numbers｝｛・ ‥ ｝

｛one number plus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛the one number minus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛find the two numbers｝｛・ ‥ ｝（next）｛・ ‥ ｝

｛there are two numbers｝｛・ ‥ ｝

｛there are two numbers｝｛・ ‥ ｝

｛one number plus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

<same>

<bind>

<bind>

<bind>

This is this

This is this

<bind>

<bind>

<same>

<bind>

｛the one number minus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛find the two numbers｝｛・ ‥ ｝（next）｛・ ‥ ｝

｛there are two numbers｝｛・ ‥ ｝

｛・ plus ‥ is …｝

｛one number plus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛the one number minus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛find the two numbers｝｛・ ‥ ｝（next）｛・ ‥ ｝

｛there are two numbers｝｛・ ‥ ｝

｛one number plus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ minus ‥ is …｝

｛the one number minus the other is …｝｛・ ‥ ｝（next）｛・ ‥ …｝

｛find the two numbers｝｛・ ‥ ｝（next）｛・ ‥ ｝

“ “the one is “ “. The other is “ “ ” is the answer to the problem”

］

In the case above, “Divide “ “ by 2” is formed when the program is given three or more

examples. Or it is formed after “Divide “ “ by “ “” is formed first and then revised to

become “Divide “ “ by 2”. Or it is formed when inputs are given to the program in such a

way that the one number and the other become the same, the two become the same,

when the difference between the two is subtracted from the one number.

<same>

,same>

<same>

,same>

［

“There are two numbers. One number equals the other number times “ “ plus “ “,

and equals the other number times “ “ minus “ “. Find the two numbers.”

 ｛ ・ ‥ ｝

 ｛ ・ ･･ ｝（next）｛ ・ ･･ … ｝

 ｛ ・ ･･ ｝（next）｛ ・ ･･ … ｝

 ｛ ・ ‥ ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝ // descriptions of relations

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝ // are omitted here.

 ｛ ・ ‥ ｝

 ｛ ・ ‥ ｝（next）｛ ・ ‥ ｝

“ “ “ plus “ “ is “ “. “ “ is “ “ greater than “ “. Divide “ “ by “ “ is “ “. The other number is “ “.

The one number is “ “ times “ “ plus “ “. The one number is “ “.”

 ｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

 ｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

 ｛ ・ ｝

 ｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

 ｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

 ｛・｝

<bind>

<bind>

<bind>

<bind>
<this is this> <this is this>

<this is this> <this is this>

<same>

<same>

<bind>

<same>

<same>

<bind>

<bind>

<bind>

<bind>

 <bind>
<bind>

“see ”the one number is “ “. ”the other number is “ “.” is the answer to the problem.”

｛ ・ ‥ ｝

｛there are two numbers｝｛ ・ ‥ ｝

｛One number equals the other number times ‥ plus ‥｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛・ ‥ ｝

｛the one number equals the other number times ‥ minus ‥.｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

｛ ・ ‥ ｝（next）｛ ・ ‥ … ｝

 ｛ ・ ‥ ｝

｛Find the two numbers.｝

 ｛ ・ ‥ ｝（next）｛ ・ ‥ ｝

｛there are ・ ‥｝｛ ・ ‥ ｝

｛there are two numbers｝｛ ・ ‥ ｝

｛One number equals the other number times ‥ plus ‥｝

｛the one number equals the other number times ‥ minus ‥.｝

｛Find the two numbers.｝

｛there are ・ ‥｝｛ ・ ‥ ｝

｛・ equals ‥‥ times ‥ plus ‥｝

｛One number equals the other number times ‥ plus ‥｝

｛the one number equals the other number times ‥ minus ‥.｝

｛Find the two numbers.｝

｛there are ・ ‥｝｛ ・ ‥ ｝

｛・ equals ‥‥ times ‥ plus ‥｝

｛・ equals ‥‥ times ‥ minus ‥.｝

｛the one number equals the other number times ‥ minus ‥.｝

<bind>

<this is this>

<this is this>

<this is this>

<this is this>

<this is this>

<this is this>

<bind>

｛Find the two numbers.｝

｛there are ・ ‥｝｛ ・ ‥ ｝

｛・ equals ‥‥ times ‥ plus ‥ ｝

｛・ equals ‥‥ times ‥ minus ‥.｝

｛Find ・ ‥｝

｛Find the two numbers.｝

“ “the one number is “ “. ”the other number is “ “ “ is the answer to the problem“.

］

3.3 A way of making methods of solving math problems

– A regularity of forming regularities of solving math problems

While it forms more than three regularities of solving math problems, it extracts common

strings from pairs of inputs and the regularities formed, or finds common deeds to form

the regularities. It can be said that pairs of inputs and the regularities formed are pairs

of inputs and outputs and that the common strings describe what the program does to

make the outputs. The common strings become a regularity of making a way to solve

math problems. The regularity is described in the below.

［

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝ （next bp）

 // replace specific link by the head of the link

 , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ （next bp）

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ ］

 // retrieve strings that match the strings

 // with replacing specific link by its head.

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝ （next bp）

 “ ～ “ “ ～ “ ｛ , , , (representative)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (representative)・ , , , ｝

 // set relations <same> when specific strings

 // are the same

“ ～ “ （next bp）

“ ～ “

⇔［ “ ～ “ ｛～｝ <bind> ］

<same>

<same>

<same>

<same>

 // find strings with quotations in its memory

// that match the inputs, and retrieve strings

// that are bound to the strings with the quotations

 , , , ～ ～ ～ , , , （next）

 , , , ～ ～ ～ , , ,

 , , , ～ ～ ～ , , , （next bp）

 , , , ～ ～ ～ , , , （next）

 <this is this>

 , , , ～ ～ ～ , , ,

］

(past) ✔

✔

✔

While the program applies regularities to solve given math problems, each regularity for

each problem, it extracts common strings in a work space. The below is the common

strings.

［

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝ （next bp）

 // replace specific link by

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝

 ⇔ ［ “ “ ｛ (specific) ・ ｝ ］

 ⇔ ［ , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ ］ （next bp）

 , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 // the head of the link

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ （next bp）

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ , , , ］

 // retrieve strings of a regularity whose first part match

// the strings with replacing a specific link by its head.

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ （next）

, , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ ］ （next bp）

, , , “ “ , , ,｛ , , , (representative) ・ , , , ｝

 // place, in a work space, retrieved strings that follow the first part.

 , , , “ “ , , , （next bp）

 , , , “ “ , , ,

 ⇔ ［ “ “ ｛ (specific) ・ ｝ ］

<same>

<same> <same>

<same>

<same> <same>

 ⇔ ［ , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ ］ （next bp）

, , , “ “ , , , ｛ , , , (specific) ・ , , , ｝

 // make strings so that strings made are bound to input strings

 // so that the binding is consisitent with regularities.

 , , , ・ ・ ・ , , , （next）

 , , , ・ ・ ・ , , , （next bp）

 , , , ・ ・ ・ , , , （next）

 , , , ・ ・ ・ , , ,

⇔ ［ , , , ～ ～ ～ , , , （next）

 <this is this>

 , , , ～ ～ ～ , , , ］ （next bp）

 , , , ・ ・ ・ , , , （next）

 <this is this>

 , , , ・ ・ ・, , ,

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (representative)・ , , , ｝ （next bp）

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 // make a representative become a specific one

 // in such a way that <same> holds.

<same>

✔

✔

<same>

✔

✔

past ✔

✔

past ✔
<same>

<same>

 “ ～ “ “ ～ “ “ “ ｛ (specific link) ・ (specific link) ・ ｝

“ “ ｛ (representative) ・ ｝ （next bp）

 “ ～ “ “ ～ “ “ “ ｛ (specific link) ・ (specific link) ・ ｝

 “ “ ｛ (representative) ・ ｝ （next bp）

 ⇔［ “ ～ “ “ ～ “ “ “ ｛ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

 “ “ ｛ (representative) ・ ｝

 ］ （next bp）

 ⇔［ “ ～ “ “ ～ “ “ “ ｛ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

 “ “ ｛ (representative) ・ ｝

 ］

 , , , （representative）・ , , , （next）

“ “ ｛ (representative) ・ ｝ （next bp）

 // place, in a work space, retrieved strings that follow the first part.

, , , （specific link）・ , , , （next）

“ “ ｛ (representative) ・ ｝ （next bp）

// conduct strings (do strings) and

// make a representative become a specific one.

, , , （specific link）・ , , , （next）

“ “ ｛ (specific link) ・ ｝

<same>

 “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (specific link) ・ (specific link) ・ (representative) ・ ｝

（next bp）

 “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (specific link) ・ (specific link) ・ (representative) ・ ｝

⇔ ［ “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

 ］ （next bp）

⇔ ［ “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

 ］

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

// place, in a work space, retrieved strings that follow the first part.

 （next bp）

 , , , （specific link）・ , , , （next）

 “ ～ “ “ ～ “ “ ～ “ “ “

｛ (representative) ・ (representative) ・ (representative) ・ ｝

 // conduct strings (do strings) and

// make a representative become a specific one.

 （next bp）

 , , , （specific link）・ , , , （next）

 “ ～ “ “ ～ “ “ ～ “ “ “

｛ (specific link) ・ (specific link) ・ (specific link) ・ ｝

<same>

 // conduct strings (do strings) and

// make a representative become a specific one.

］

3.4 Trials of forming a hierarchical regularity

 -- A regularity consisting of cases one can do and cases one cannot do

This section describes a case where the program links a regularity describrd in the

previous section to ［make a way to do a deed］. When program T gives program I a new

math problem and program I does not solve it (cannot reach its goal), program I retrieves

regularities already formed and applies them to try reaching the goal. Among its trials

of reaching the goal, it retrieves a general regularity that matches the strings of the

math problem with replacing ［ , , , find , , , number］ by ［a deed］; the regularity

includes cases where it can do a deed, where it cannot do the deed, and ［make a way to

do a deed］, namely, generates a way to change cases from ［cannot do］ to ［can do］.

It applies the regularity to the current case; puts ［ , , , find , , , number］ into ［a deed］

but it cannot put any into ［make a way to do a deed］ because a regularity formed in

the previous section is not linked to ［make a way to do a deed］.

The program replaces sub strings ｛ specific link ・｝ by their representatives

｛representative ・｝ and tries to find strings in its memory that match the inputs with

the replaced sub strings. Although the program does not find the strings of a regularity

to reach a goal, it finds that the former part of another math problem already got match

the inputs with the replaced sub strings. The program then finds that replacing sub

strings ｛specific link ・｝ with their representatives ｛representative ・｝ matches

replacing sub strings in the inputs by their representatives that are kept in a regularity

described in the previous section. It retrieves the regularity and applies it to the example

strings that follow and to make the applied strings consistent to the current input strings

(namely, make ｛representative ・｝ be ｛specific ・｝ so that ｛specific ・｝ satisfies

relations kept in the example. It then finds the goal of the current inputs (the current

math problem).

The program then takes the general regularity that has states of ［cannot do］, states

［can do］, and ［make a way to do a deed］, and tries to see links from the states and

the change of the states of the general regularity to current states and current change of

the states. Link ［cannot solve a current math problem］ to ［cannot do a deed］, ［can

solve a current math problem］ to ［can do a deed］, and the regularity formed in the

previous section to ［make a way to do a deed］.

《 ｛ T I ｝

“There is one number. Multiply it by 3. Add 7 to the multiplication result is 100. Find

the number.”

⇔［“There is one number. Multiply “ “ by “ “. Add “ “ to “ “ is “ “ ”. Find the number.”

 , , ,

 “The number is “ “.“

 “see “the number is “ “ “ is the answer to the problem.”

 , , ,

］

 ｛・｝

 , , ,

“The number is 31.” ｛ 31 ｝

 , , ,

“see “the number is 31“ is the answer to the problem.”

 , , ,

》

《 ｛ T A I ｝

“There is one number. Multiply it by 3. Add 7 to the multiplication result is 100. Find

the number.”

⇔［“There is one number. Multiply “ “ by “ “. Add “ “ to “ “ is “ “ ”. Find the number.”

 , , ,

］

｛・｝｛ I ｝

 , , , ｛ I ｝

“The number is 31.” ｛ 31 ｝ ｛ I ｝

“see “the number is 31“ is the answer to the problem.” ｛ I ｝

 , , , ｛ I ｝

 ｛ ｝｛ A T I ｝

⇔［”You cannot do ”～～”. ｛～～｝］

”You cannot do “There is one number. Multiply it by 3. Add 7 to the multiplication

result is 100. Find the number.” .“ ｛ T A I ｝

｛・｝｛ T A I ｝

 , , , ｛ T A I ｝

“The number is 31.” ｛ 31 ｝ ｛ T A I ｝

“see “the number is 31“ is the answer to the problem.” ｛ T A I ｝

 , , , ｛ T A I ｝

“There is one number. Multiply it by 3. Add 7 to the multiplication result is 100. Find

the number.” ｛ A T I ｝

 ｛ 31 ｝｛ A T I ｝

⇔［”You can do ”～～”. ｛～～｝］

”You can do “There is one number. Multiply it by 3. Add 7 to the multiplication result

is 100. Find the number.” .“ ｛ T A I ｝

》

［

“Do a deed”

 // initial state

 // no way to a goal

“Cannot do a deed“

“say a way to do a deed”

“ “

“ “

“Do a deed”

 // goal state

｛ ～～｝ // a way to a goal

 ｛＿～｜ ｝

“Can do a deed“

］

“deed” ｛ ～～｝｛ I ｝

⇔ “deed” ｛ ～～｝｛ I ｝

｛＿～｜ ｝

《 ｛ T I ｝

“There are two numbers. Add one number and the other number is 13. Add the one

number times 2 and the other number times 4 is 36. Find the two numbers.”

⇔［｛・ ･･｝”two numbers”］［｛～ ～ ｝”there are ～ ～”］

⇔［｛・｝”one number”］［｛・ ･･｝”the other number”］

⇔［”Add “ “ and “ “ is “ “.” ｛・ ･･ ｝（next）｛・ ‥ …｝］

⇔［” “ “ times “ “ is “ “.” ｛・ ‥ ｝（next）｛・ ‥ …｝］

⇔［"Find number .” ｛representative ・｝（next）｛specific link ・｝］

⇔［"There , , , number , , , Find number .” ｛representative ・｝（next）, , , （next）

｛specific link ・｝］

“13 times 2 is 26. Add the one number times 2 and the other number times 2 is 26. 36

minus 26 is 10. Subtract 2 from 4 is 2. Divide 10 by 2 is 5. 13 minus 5 is 8. The one

number is 8. The other number is 5.”

⇔［” “ “ times “ “ is “ “.” ｛・ ‥ ｝（next）｛・ ‥ …｝］

⇔［｛・｝”one number”］［｛・ ･･｝”the other number”］

⇔［”Add “ “ and “ “ is “ “.” ｛・ ･･ ｝（next）｛・ ‥ …｝］

⇔［" “ “ minus “ “ is “ “.” ｛・ ‥｝（next）｛・ ･･ … ｝］

⇔［"Divide “ “ by “ “ is “ “.” ｛・ ‥｝（next）｛・ ･･ … ｝］

⇔［｛・｝”one number is “ “.”］［｛・ ･･｝”the other number is “ “.”］

// replace sub strings by their representatives to see if strings that match are in its

// memory.

// but, strings to reach a goal are not there. Keep the input strings in its memory.

》

《 ｛ T I ｝

“There are two numbers. Add one number and the other number is 18. Add the one

number times 5 and the other number times 7 is 98. Find the two numbers.”

⇔［｛・ ･･｝”two numbers”］［｛～ ～ ｝”there are ～ ～”］

⇔［｛・｝”one number”］［｛・ ･･｝”the other number”］

⇔［”Add “ “ and “ “ is “ “.” ｛・ ･･ ｝（next）｛・ ‥ … ｝］

⇔［” “ “ times “ “ is “ “.” ｛・ ･･ ｝（next）｛・ ‥ … ｝］

⇔［"Find , , , number .” ｛representative ・｝（next）｛specific link ・｝］

⇔［"There , , , number , , , Find number .” ｛representative ・｝（next）, , , （next）

｛specific link ・｝］

 ｛・ ‥ ｝

 ｛・ ‥ ｝（next）｛・ ‥ 18｝

｛・ 5 ｝（next）｛・ 5 ‥｝

｛・ 7 ｝（next）｛・ 7 ‥｝

｛・ ‥ ｝（next）｛・ ‥ 98｝

｛・ ‥｝（next）｛・ ‥｝

// replaces sub strings by their representatives to see if strings that match are in its

// memory

// strings are there; strings of a regularity do not reach a goal of current strings, strings

// of an example reach a goal of the example, not a goal of current strings.

// no strings of regularities lead to the end state, “ “ ｛ specific link ・ ｝.

// tries to find a way to the end state.

// finds input and output pairs match strings of a regularity

// it tries to apply the regularity to the example and to get strings that lead

// to the end state.

［

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝ （next bp）

 // replace specific link by

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝

<same> <same>

 ⇔ ［ “ “ ｛ (specific) ・ ｝ ］

 ⇔ ［ , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ ］ （next bp）

 , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 // the head of the link

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ （next bp）

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ , , , ］

 // retrieve strings of a regularity whose first part match

// the input strings with replacing a specific link by its head.

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ （next）

, , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ ］ （next bp）

, , , “ “ , , ,｛ , , , (representative) ・ , , , ｝

 // place, in a work space, retrieved strings that follow the first part.

 , , , “ “ , , , （next bp）

 , , , “ “ , , ,

 ⇔ ［ “ “ ｛ (specific) ・ ｝ ］

 ⇔ ［ , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ ］ （next bp）

, , , “ “ , , , ｛ , , , (specific) ・ , , , ｝

 // make strings so that strings made are bound to input strings

 // so that the binding is consisitent with a regularity retrieved.

 , , , ・ ・ ・ , , , （next）

 , , , ・ ・ ・ , , , （next bp）

 , , , ・ ・ ・ , , , （next）

✔

<same>

<same> <same>

<same>

past ✔

✔

 , , , ・ ・ ・ , , ,

⇔ ［ , , , ～ ～ ～ , , , （next）

 <this is this>

 , , , ～ ～ ～ , , , ］ （next bp）

 , , , ・ ・ ・ , , , （next）

 <this is this>

 , , , ・ ・ ・, , ,

 // place a focus in strings so that <this is this> points

 // to the place where a focus is placed before (next)

 // in input strings; in other words, a place in strings

 // pointed by <this is this> before (next) is the place

 // where a focus is placed, and the place in strings after

// (next) is pointed by <this is this>. Then a new focus

// is placed as a position relative to the place pointed is

// described in a regularity.

 , , , (specific link)・, , , （next）

 , , , (representative)・, , ,

 ⇔ , , , ・, , , （next）

 <this is this>

 , , , ・, , , （next bp）

 , , , (specific link)・, , , （next）

 , , , (specific link)・, , ,

 // make a representative become a specific one

 // in such a way that <this is this> holds

 <same>

 <same>

✔

✔

✔

past ✔
<same>

<same>

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (representative)・ , , , ｝ （next bp）

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 // make a representative become a specific one

 // in such a way that <same> holds.

<same>

<same>

 “ ～ “ “ ～ “ “ “ ｛ (specific link) ・ (specific link) ・ ｝

“ “ ｛ (representative) ・ ｝ （next bp）

 “ ～ “ “ ～ “ “ “ ｛ (specific link) ・ (specific link) ・ ｝

 “ “ ｛ (representative) ・ ｝ （next bp）

 ⇔［ “ ～ “ “ ～ “ “ “ ｛ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

 “ “ ｛ (representative) ・ ｝

 ］ （next bp）

 ⇔［ “ ～ “ “ ～ “ “ “ ｛ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

 “ “ ｛ (representative) ・ ｝

 ］

 , , , （representative）・ , , , （next）

“ “ ｛ (representative) ・ ｝ （next bp）

 // place, in a work space, retrieved strings that follow the first part.

, , , （specific link）・ , , , （next）

“ “ ｛ (representative) ・ ｝ （next bp）

// conduct strings (do strings) and

// make a representative become a specific one.

, , , （specific link）・ , , , （next）

“ “ ｛ (specific link) ・ ｝

<same>

 “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (specific link) ・ (specific link) ・ (representative) ・ ｝

（next bp）

 “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (specific link) ・ (specific link) ・ (representative) ・ ｝

⇔ ［ “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

 ］ （next bp）

⇔ ［ “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

 ］

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

// place, in a work space, retrieved strings that follow the first part.

 （next bp）

 , , , （specific link）・ , , , （next）

 “ ～ “ “ ～ “ “ ～ “ “ “

｛ (representative) ・ (representative) ・ (representative) ・ ｝

 // conduct strings (do strings) and

// make a representative become a specific one.

 （next bp）

 , , , （specific link）・ , , , （next）

 “ ～ “ “ ～ “ “ ～ “ “ “

｛ (specific link) ・ (specific link) ・ (specific link) ・ ｝

<same>

 // conduct strings (do strings) and

// make a representative become a specific one.

］

 // apply the above to the current problem, and get the following.

“There are two numbers. Add one number and the other number is “ “. Add the one

number times “ “ and the other number times “ “ is “ “. Find the two numbers.”

 ｛・ ‥ ｝

 ｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ‥ ｝（next）｛・ ‥ …｝

 ｛・ ･･ ｝（next）｛・ ･･ ｝

 // retrieves strings that match the above with sub strings replaced

// by their representatives. Namely another example with repleace sub strings.

 // and strings that follow.

“ “ “ times “ “ is “ “. Add the one number times “ “ and the other number times “ “ is “ “.

“ “ minus “ “ is “ “. Subtract “ “ from “ “ is “ “. Divide “ “ by “ “ is “ “. “ “ minus “ “ is “ “. The

one number is “ “. The other number is “ “.”．

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ … ｝（next）｛・ … ‥｝

｛・ … ｝（next）｛・ … ‥｝

｛・ ‥ ｝｛next｝｛・ ‥ …｝

 <bind>

 <bind>

 <bind>

 <bind>

 <same>

<this is this>

<this is this>

<this is this>

<this is this>

<this is this>

 <same>

 <bind>

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ･･ ｝（next）｛・ ･･ …｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ‥ ｝（next）｛・ ‥ …｝

｛・ ‥ ｝（next）｛・ ‥ ｝

 // apply the regularity to the above so that

 // 1) representatives in the above become specific ones,

// 2) the specific ones satisfy <this is this>, <same>, and <bind>

// as in the above and in the current problem.

 ｛・ ‥ ｝

 ｛・ ‥ ｝（next）｛・ ‥ 18｝

｛・ 5 ｝（next）｛・ 5 ‥｝

｛・ 7 ｝（next）｛・ 7 ‥｝

｛・ ‥ ｝（next）｛・ ‥ 98｝

“18 times 5 is 90”. “Add the one number times 5 and the other number times 5 is 90.” “98

minus 90 is 8.” “Subtract 5 from 7 is 2.” “Divide 8 by 2 is 4.” “18 minus 4 is 14.” “The one

number is 14.” “The other number is 4.”

｛18 5 ｝（next）｛18 5 90｝

｛・ 5 ｝（next）｛・ 5 ‥｝

｛・ 5 ｝（next）｛・ 5 ‥｝

｛・ ‥ ｝｛next｝｛・ ‥ 90｝

<this is this> <this is this>

<this is this>

<this is this>

 <bind>

 <bind>

 <bind>

 <bind>

 <bind>

<this is this>

<same>

<this is this>

<same>

<same>

｛98 90 ｝（next）｛98 90 8｝

｛7 5 ｝（next）｛7 5 2｝

｛8 2 ｝（next）｛8 2 4｝

 ｛18 4 ｝（next）｛18 4 14｝

｛14 4 ｝（next）｛14 4 ｝

》

<this is this>

<same>

<this is this>

<same>

<same>

<this is this>

<this is this>

3.5 A regularity of having another program make methods of solving problems

The program tries to have a regularity hold for cases where a sub string of the regularity

strings is replaced by another sub string. Here a sub string and another sub string are

found to have the same representative.

The program already has formed that I, program Pa, and other program are specific

programs and their representative is one. Suppose that the program has formed a

regularity of I solve a math problem given by program T. Suppose also that the program

is given to have another program Pa solve the math problem. Then it replaces its sub

string program T by I and I by program Pa, and it tries to have the regularity hold for

sub strings I and program Pa; Program T gives I “do ～～”. I give program Pa “do ～～”.

When it finds the regularity does not hold, namely program Pa does not reach a goal

(does not output a solution to the math problem), it tries to make the regularity hold,

namely has program Pa reach the goal (output the solution). It retrieves a regularity to

have program Pa make a way to reach the goal (output the solution), namely make

program Pa change states from it has no way to the goal to it has a way to the

goal.program Pa.

The program tries to give program Pa strings with quotations each is bound to a step of

reaching the goal. It tries to find strings with quotations when a step has not been bound

to strings with quotations.

［

［ ”do ” , , , Find the number” ”

// does not retrieve a regularity to reach the goal:

// “the number is “ “ ｛specific link ・｝

⇔ ［ ”cannot do ” , , , Find the number.” ”

“～～”

 ］

］

”cannot do ” , , , Find the number.” ”

⇔ ［

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝ （next bp）

 // replace specific link by

 , , , “ “ , , , ｛ , , , (specific link) ・ , , , ｝

 ⇔ ［ “ “ ｛ (specific) ・ ｝ ］

 ⇔ ［ , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ ］ （next bp）

 , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 // the head of the link

“given inputs, replace an example number by a number in the inputs.”

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ （next bp）

, , , “ “ , , , ｛ , , , (representative) ・ , , , ｝

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ , , , ］

 // retrieve strings of a regularity whose first part match

// the strings with replacing a specific link by its head.

⇔ , , , （next） “the number is “ “ “ ｛・｝

⇔ “～～“ ｛ ～～｝

<same>

<same> <same>

“retrieve strings that match the inputs.”

 ⇔ ［ , , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ （next）

, , , “ “ , , ,｛ , , , (representative) ・ , , , ｝ ］ （next bp）

, , , “ “ , , ,｛ , , , (representative) ・ , , , ｝

 // place, in a work space, retrieved strings that follow the first part.

 , , , “ “ , , , （next bp）

 , , , “ “ , , ,

 ⇔ ［ “ “ ｛ (specific) ・ ｝ ］

 ⇔ ［ , , , “ “ , , , ｛ , , , (representative) ・ , , , ｝ ］ （next bp）

, , , “ “ , , , ｛ , , , (specific) ・ , , , ｝

 // make strings so that strings made are bound to input strings

 // so that the binding is consisitent with regularities retrieved.

“write the input number”

“make this as the same as this”

 , , , ・ ・ ・ , , , （next）

 , , , ・ ・ ・ , , , （next bp）

 , , , ・ ・ ・ , , , （next）

 , , , ・ ・ ・ , , ,

⇔ ［ , , , ～ ～ ～ , , , （next）

 <this is this>

 , , , ～ ～ ～ , , , ］ （next bp）

 , , , ・ ・ ・ , , , （next）

 <this is this>

 , , , ・ ・ ・, , ,
✔

✔

<same> <same>

✔

✔

<same>

past ✔

✔

past ✔
<same>

<same>

“the next is this”

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (representative)・ , , , ｝ （next bp）

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 “ ～ “ “ ～ “ ｛ , , , (specific link)・ , , , ｝

 // make a representative become a specific one

 // in such a way that <same> holds.

“make this be the same as this.”

<same>

<same>

 “ ～ “ “ ～ “ “ “ ｛ (specific link) ・ (specific link) ・ ｝

“ “ ｛ (representative) ・ ｝ （next bp）

 “ ～ “ “ ～ “ “ “ ｛ (specific link) ・ (specific link) ・ ｝

 “ “ ｛ (representative) ・ ｝ （next bp）

 ⇔［ “ ～ “ “ ～ “ “ “ ｛ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

 “ “ ｛ (representative) ・ ｝

 ］ （next bp）

 ⇔［ “ ～ “ “ ～ “ “ “ ｛ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

 “ “ ｛ (representative) ・ ｝

 ］

 , , , （representative）・ , , , （next）

“ “ ｛ (representative) ・ ｝ （next bp）

 // place, in a work space, retrieved strings that follow the first part.

, , , （specific link）・ , , , （next）

“ “ ｛ (representative) ・ ｝ （next bp）

// conduct strings (do strings) and

// make a representative be a specific one.

, , , （specific link）・ , , , （next）

“ “ ｛ (specific link) ・ ｝

“retrieve strings that match the inputs”

<same>

 “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (specific link) ・ (specific link) ・ (representative) ・ ｝

（next bp）

 “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (specific link) ・ (specific link) ・ (representative) ・ ｝

⇔ ［ “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

 ］ （next bp）

⇔ ［ “ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝ （next）

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

 ］

 , , , （representative）・ , , , （next）

“ ～ “ “ ～ “ “ ～ “ “ “

 ｛ (representative) ・ (representative) ・ (representative) ・ ｝

// place, in a work space, retrieved strings that follow the first part.

 （next bp）

 , , , （specific link）・ , , , （next）

 “ ～ “ “ ～ “ “ ～ “ “ “

｛ (representative) ・ (representative) ・ (representative) ・ ｝

 // conduct strings (do strings) and

// make a representative become a specific one.

 （next bp）

 , , , （specific link）・ , , , （next）

 “ ～ “ “ ～ “ “ ～ “ “ “

｛ (specific link) ・ (specific link) ・ (specific link) ・ ｝

<same>

 // conduct strings (do strings) and

// make a representative become a specific one.

“do strings as I did before”

 ］

［ ”do ” , , , Find the number” ”

 ⇔ , , , （next） “the number is “ “ “ ｛ ・ ｝

// retrieve a regularity to reach the goal:

// “the number is “ “ ｛・｝

”can do ” , , , Find the number.” ”］

］

［”see “the number is “ “ “ is the answer to “ , , , Find the number.” “ （next）

｛ (specific link) ・ ｝ ］

］

The above is a regularity the program has formed, and the regularity has strings with

quotations bound to capabilities that the program has from the beginning and outputs

the strings. One of the original capabilities is to replace sub strings of the inputs by their

representatives. For example, it replaces “1”, “2”, or “10” by “a number”. The program

binds strings “replace an example number by a number” to the original capability, and

outputs the strings.

At this point, the program does not differentiate an original capability from an ability

acquired after it starts running. For example, a human gives the program addition of

two specific numbers such as add 2 and 3, and an ability that enables the program

conduct add 2 and 3 is the acquired ability with an original capability. But extending it

to numbers that are not given by the human is the original capability.

The program has not yet formed three regularities; one describes a capability including

both original and acquired capabilities, one describes original capabilities, and the third

describes acquired capabilities.

